
EECS 6327 (Fall 2016) Project one

You need to work individually for this project. Submit your codes/scripts and a project
report (maximum 8 pages) to Hui Jiang (hj@cse.yorku.ca) before the due date. No late
submission will be accepted. No Handwriting.

Due date : Nov. 10, 2016

Pattern Classification: Features and Models

In this project, you will implement several discriminative models for pattern
classification. You may choose to use any programming language for your own
convenience. You are ONLY allowed to use libraries for linear algebra operations, such
as matrix multiplication, matrix inversion, matrix factorization, and etc. However, You
are NOT allowed to use any existing machine learning or statistics toolkits or libraries or
any open-source codes for this project and you will have to implement the most part of
the model learning and testing algorithms yourself as a practice of various algorithms
learned in class. This is the purpose of this project. If you have any questions, please
consult the instructor for what you can or can not use for this project.

You will use a popular data set, called MNIST, throughout the project. The MNIST
database of handwritten digits contains 60,000 training images and 10,000 test images,
and the images are 28-by-28 in size. The MNIST data set can be downloaded from
http://yann.lecun.com/exdb/mnist/. In this project, for simplicity, you just use pixels as
raw features for the following models.

What to do?

1. Feature Extraction and Data Virtualization: Select three digits of ‘3’, ‘5’ and
‘9’, study the effects of various dimensionality reduction methods. i) Use all
training images of these three digits (‘3’, ‘5’ and ‘9’) to estimate principal
component analysis (PCA) projection matrices, and plot the total distortion errors
of these images as a function of the used PCA dimensions (such as 2, 10, 50, 100,
200, 300) ; ii) Use PCA and Linear Discriminant Analysis (LDA) to project all
these images into 2-D space and plot them with three different colors for data
virtualization; iii) Comparing these two linear methods with a popular nonlinear
method, namely t-Distributed Stochastic Neighbor Embedding (t-SNE)
(https://lvdmaaten.github.io/tsne/). You don’t need to implement t-SNE and can
directly download the t-SNE code from the website and run it on your data to
compare with PCA and LDA.

2. Linear Regression and Logistic Regression: Use all training data to learn two

10-class classifiers using linear regression and logistic regression, and report the
best possible classification performance in the held-out test images. For logistic
regression, you may choose to use any iterative optimization algorithm. Don’t just
call any off-the-shelf optimizers. You need to implement the optimizer yourself.

3. Support Vector Machine: Use all training data to learn two 10-class classifiers

using linear support vector machine (SVM) and nonlinear SVM (using Gaussian
RBF kernel), and report the best possible classification performance in the held-
out test images. Don’t just call any off-the-shelf optimizers. You need to
implement the SVM optimizer yourself.

4. Deep Neural Networks: Implement a general back-propagation (BP) algorithm
for feed-forward multi-layer deep neural networks. Use all training data to learn a
10-class classifier using your own BP implementation, investigate various
network structures (such as different number of layers and nodes per layer), report
the best possible classification performance in the held-out test images.

What to submit?

You need to submit all of your codes written for this project. Write ONE script for each
of the above steps for the instructor to quickly run your code and repeat your results.
Please provide a clear instruction on how to repeat your experiments in a separate readme
file. You need to submit a project report (in pdf, maximum 8 pages) to summarize what
you have done in terms of algorithm development and experimental fine-tuning, please
report the best settings for each classifier and also include your findings from this project.

