
1

EECS2031

Introduction

Warning: These notes are not complete, it is
a Skelton that will be modified/add-to in the
class. If you want to us them for studying,
either attend the class or get the completed
notes from someone who did

Introduction

• Instructor: Mokhtar Aboelaze

• Room 2026 CSEB
lastname@cse.yorku.ca x40607

• Office hours W 2:00-4:00 or by
appointment

Grading Details

• Participation 5%

• Lab 15%

• 3 tests 18% each (total 54%)

• Final 26%

2

About the course

• By the end of the course, the students will
be expected to be able to:
– Use the basic functionality of the Unix shell, such as

standard commands and utilities, input/output
redirection, and pipes

– Develop and test shell scripts of significant size.

– Develop and test programs written in the C
programming language.

– Describe the memory management model of the C
programming language

Introduction

• Course Content

• C
– Learn how to write test, and debug C

programs.

• UNIX (LINUX)
– Using Unix tools to automate making and

testing.

– Unix shell programming

Text

• The C Programming Language, Kernighan
and Ritchie (K+R)

• C Programming: A Modern Approach 2nd

edition K.N. King (optional)

• Practical Programming in the UNIX
Environment, edited by W. Sturzlinger

• Class notes (Slides are not complete,
some will be filled in during class).

• Man pages

3

Course Objective

• By the end of the course, you should be
able to
– Write applications (though small) in C

– Test and debug your code

– Use UNIX to automate the compilation
process

– Write programs using UNIX shell scripts and
awk

WHY C and UNIX

• Wide use, powerful, and fast

• Both started at AT&T Bell Labs

• UNIX was written in assembly, later
changed to C

• Many variants of UNIX

WHY C and UNIX

• The first part of the course is C

• The second part shell script (sh)

• We will start with a quick introduction to
Unix to be able to start the labs.

• Lab 1 is this week (introduction to Unix)

• Lab policy

4

Introduction to Unix

• Please check the tutorial at
http://www.cs.sfu.ca/~ggbaker/reference/unix/

• The first 4 tutorials

• Blackboard

C – A History

• In 1972 Kernighan and Ritchie invented C

• In 1978 Brian Kernighan and Dennis Ritchie
Published their “white” book. Became
defacto standard for C known as K&R C.

• ANSI completed a standard for C approved
in 1989 as ANSI X3.159-1989 known as
C89 or C90 (ANSI-C).

• C99 became standard in ISO/IEC
9899:1999.

Languages based on C

• C++ basically object oriented C

• Java C syntax, much more restrictive +
garbage collection

• C#

• Perl started as scripting language,
overtime adopted many features of C

5

C

• Almost low level, small, permissive (assumes
you know what are you doing) language.

• Efficient, portable, powerful, and flexible (from
system programming to embedded systems).

• Can be error prone, difficult to understand
(see next slide)

Obfuscated C

int v,i,j,k,l,s,a[99];

main(){

for(scanf("%d",&s);*a-s;v=a[j*=v]-a[i],k
=i<s,j+=(v=j<s&&(!k&&!!printf(2+"\n\n%c"
-(!l<<!j)," #Q"[l^v?(l^j)&1:2])&&++l ||
a[i]<s&&v&&v-i+j&&v+i-j))&&!(l%=s),v||
(i==j?a[i+=k]=0:++a[i])>=s*k&&++a[--i])

;

}

Tips

• Use tools to make programs more reliable

• Use existing code library

• Adopt a sensible set of coding conventions

• Avoid tricks and overly complex code (do
not ever do something like the Q8.c)

6

Software Development Cycle

Idea/specs Design Coding Program

TestingDebugging

Why Testing

• Specifications = LAW, you have to obey it.

• No changes (improvement) unless it is approved

• If in doubt, ask

• First create test cases, test, if error, debug,
repeat

• Testing can show the presence of faults, not
their absence -- Dijkstra

• Testing is very costly, in large commercial
software 1-3 bugs per 100 line of code.

Why Testing

• 1990 AT&T long distance calls fail for 9 hours
– Wrong location for C break statement

• 1996 Ariane rocket explodes on launch
– Overflow converting 64-bit float to 16-bit integer

• 1999 Mars Climate Orbiter crashes on Mars
– Missing conversion of English units to metric units

• Therac: A radiation therapy machine that delivered
massive amount of radiations killing at lease 5
people
– Among many others, the reuse of software written for a machine

with hardware interlock. Therac did not have hardware interlock.

7

Why Testing

– Jan 13, 2005, LA Times

“A new FBI computer program designed to
help agents share information to ward off
terrorist attacks may have to be scrapped,
forcing a further delay in a four-year, half-
billion-dollar overhaul of its antiquated
computer system… Sources said about $100
million would be essentially lost if the FBI
were to scrap the software…”

Compile and Run

• The code is compiled by using gcc
• gcc file.c

• gcc –o output file.c

• gcc –Idirectory file.c

• $PATH and a.out

Type of Errors

• Errors in program called bugs

• Testing is the process of looking for errors,
debugging if found

• Three types of errors
– Syntax

– Run-time

– Logic

8

Syntax Errors

• Mistakes by violating “grammar” rules

• Diagnosed by C++ compiler

• Must fix before compiler will translate code

Syntax Errors

• #<include stdio.h>
• int main ();
• (
• printf(‘Hello World’);
• /* Next line will output
• a name! /*
• printf(“ Total is %d

\n”,total);
• printf(“Final result is

\n,result);
• }

#include <stdio.h>
int main()
{
printf(“Hello World”);

/*next line will output
A name */

Printf(“Total is %d
\n”,total);

printf(“Final result is
\n”,result););
}

Runtime Errors

• Violation of rules during execution of
program

• Computer displays message during
execution and execution is terminated

• Error message may help locating error

• E.g. X= 5 / 0;

9

Logical Errors

• Will not be detected by the compiler, may
or may not produce an error message (if it
results in a runtime error)

• Difficult to find

• Execution is complete but output is
incorrect

• Programmer checks for reasonable and
correct output

