
1

CSE2301

File Access

Random Numbers

Testing and Debugging

Warning: These notes are not complete, it is
a Skelton that will be modified/add-to in the
class. If you want to us them for studying,
either attend the class or get the completed
notes from someone who did

These slides are based on slides by Prof. Wolfgang
Stuerzlinger at York University

Introduction

• In this part, we introduce
– Testing and debugging

– Errors

– I/O

– Time and date

– Random number generation

Streams and Files

• Stream: any source of input or any
destination for output.

• Files, but could be also devices such as
printers or network ports.

• Accessing streams is done via file pointer
that is of type FILE *.

• Standard streams stdin, stdout,
stderr.

2

Files

• You must open the file before you read or
write to it (what about stdin, …).

• The system checks the file, and returns a
small non-negative integer known as file
descriptor, all reads and writes are
through this file descriptor.

• 0,1,2 are reserved for stdin, stdout, and
stderr.

Files
• FILE *fp1;

• FILE *fopen(char *name, char *mode)
• fp1=fopen(name, mode);

• Do not assume file will open, always
check for a null pointer.

• Name is a character string containing the
name of the file, mode is a character string
to indicate how the file will be used

• Mode could be “r”, “w”, “a”, “r+”,

Files

• To read or write characters from a file
• int fgetc(FILE *fp);

• Returns a byte from a file, or EOF if it
encountered the end of file

• int fputc(int c, FILE *fp);

• Writes the character c to the file (where to
write it?)

• Be aware of “\” in the file name it might be
treated as escape char. use “/”, or “\” ”\”

3

opening a file

FILE *fp

fp = fopen(“name”, “r”);

if(fp == NULL) {printf (…); exit }

• …..

• OR
if((fp=fopen(NAME,”r”) == NULL)
{..}

Character I/O

• putchar(ch) writes one char to stdout

• fputc(ch, fp) writes ch to fp (same for putc)

• putc is usually implemented as a macro or
function, fputc is a function.

• putchasr is defined as

• #define putchar(c) putc((c, stdout)

• If error, return EOF

Character I/O

• int fgetc(FILE *);

• int getc(FILE *);

• int getchar(void); /* from stdin */

• int ungetc(int c, FILE *fp);

• Read char is unsigned char converted to
int (must be int for EOF to work properly).

while((ch = getc(fp)) != EOF {

bla bla bla

}

4

Line I/O

• int fputs(const char * s, FILE *fp);

• int puts(const char * s);

• puts adds a newline char after s, fputs
doesn’t.

• Both return EOF in case of error

Line I/O

char *fgets(char * s, int n, FILE *fp);

char *gets(char * s);

• gets reads character till a new line (discards)

• fgets reads characters till a newline or n-1
characters. if newline is read, it is added to
the string.

Block I/O

size_t fread(void * ptr, size_t
size, size_t nmemb, FILE *fp);

size_t fwrite(void * ptr, size_t
size, size_t nmemb, FILE *fp);

• The function reads nmemb elements of
data each is size bytes long from the
stream pointed to by fp and returns the
actual number of items successfully read.

5

Position in Files

• int fseek(FILE *stream, long offset, int whence);
• The fseek() function shall set the file-position indicator

for the stream pointed to by stream. If a read or write
error occurs, the error indicator for the stream shall be
set and fseek() fails.

• The new position, measured in bytes from the beginning
of the file, shall be obtained by adding offset to the
position specified by whence. The specified point is the
beginning of the file for SEEK_SET, the current value of
the file-position indicator for SEEK_CUR, or end-of-file
for SEEK_END.

Position in File

• some problems when dealing with text
files.

• See example in the lecture.

Formatted I/O

• we can use fprintf and fscanf with the first
parameter a file pointer.

• Error?

6

Formatted I/O

• for scanf and fscanf, error may be
• End-of-file feof(fp) returns a non-zero

value
• Read error ferror(fp) returns a non-

zero value

• A matching error, neither of the above two
indicators returns a non-zero.

I/O

• size_t fread(void *restrict ptr, size_t size,
size_t ntimes, FILE *restrict stream)

• size_t fwrite(const void *restrict ptr, size_t
size, size_t nitems, FILE *restrict stream);

Random Numbers

• #include <stdlib.h>

• Int rand(void)

• Returns a random number between 0 and
RAND_MAX

• Each time the program runs the function returns
the same sequence

• Important in debugging, but sometimes we want to
return random numbers every time we run the
program

• drand48() uses a much more elaborate random
number generator use srand(seed) first

7

Random Numbers

• void srand(unsigned int seed)

• Seeds the random number generator

• For a truly random number that will not be
repeated every time you run the program
open and read from /dev/random or
/dev/urandom

Random Numbers

FILE *fp1;

int c;

fp1=fopen(“/dev/urandom”,”r”);

c=getc(fp1);

printf(“%d\n”, (int)c);

fclose(fp1);

Time

• In time.h

• time_t time(time_t *x)

• Returns the number of seconds from jan. 1
1970

• If x is not NULL, the value is stored in the
variable pointed to by x

• Could be used to seed the RNG

• srand((unsigned int) time(NULL));

8

Testing

• You wrote your program, compiled it
(correcting syntax errors), ran it, and
tested it, but it failed, what to do?

• There is a bug somewhere, to remove it
we have to know where is it first.

• After finding it, remove/correct it changing
as little code as possible to minimize
introducing new bugs.

Testing/Debugging

• Testing to find out as many things about
the problem as possible

• Try to isolate the bug, what caused it

• Correct it. After that
– Test to see if the problem is solved

– Every thing that worked before is working

– No new errors are introduced

Instrument your code

• Insert debugging statements.

i=f(j);

printf(“f.in %d out %d \n”,i,j);

• That shouldn’t be in the final version

• You have to remove it after debugging,
that may cause extra errors if you are not
very careful in removing it

9

Instrument your code

• You can use conditional compilation
#define DEBUG 1

……….

i=f(j);

#if DEBUG

printf(“f:in %d out %d\n”,i,j);

#endif

Debugging

main() {
….
function1(…)

function2 (….)

function3 (…..)
Crashes, where is the problem

printf(“ before function 1………..”);

printf(“ After function 1………..”);

printf(“ before function 2………..”);

printf(“ After function 3………..”);

printf(“ before function 3………..”);

Examples

• 2 examples on the use of gdb

10

Debugger

• Next Advance one statement, do not step
into calls.

• Step Advance one statement in the
program

• List show your program

• Run run

• Break line number, function name, fun:line

Debugger

• Print: variable

• X: contents of an address

• Backtrace:The "backtrace" command
tells gdb to list all the function calls (that
leads to the crash) in the stack frame.

• del [n] delete break point number n

Common Crash Causes

• Unaligned memory access (access to
more than one byte must be aligned at a
particular size), depends on the CPU.

• Using uninitialized pointers

• Going outside the array

11

Writing Good Code

• Debugging tools are no substitute to good
programming practice.

• Be very careful with pointers and memory
allocation and de-allocation

• Good modular design.

• Clear logic, boundary condition testing,
assertions, limited global data, …

• Assigning responsibility

Core files

• When a program dumps core, it creates a
dump files called “core” in the current
directory.

• The file is an image of memory, registers
including stack and data at time of crash.

• Can use gdb program core

• Some extra tools for memory dmalloc,

electric fence, bcheck, valgrind

Errors

• #include <errno.h>

• Defines an int errno and some other
constants

• For example, math function (in case of
error) sets errno to ERANGE or EDOM

• An errno of 0, means no error

• errno is not reset by itself, you must reset
it.

12

Example

#include <stdio.h>
#include <errno.h>
#include <math.h>
#define POSITIVE 25
#define NEGATIVE -25

int main()
{
double ret;

errno = 0;
ret = sqrt(NEGATIVE);
if (errno == EDOM) /*EDOM

Signifies Domain Error*/

printf("Domain Error : Invalid Input
To Function\n");

else
printf("Valid Input To Function\n");

errno = 0;
ret = sqrt(POSITIVE);

if (errno == EDOM)
printf("Domain Error : Invalid Input

To Function\n");
else
printf("Valid Input To Function\n");

return 0;
}

Source : http://www.daniweb.com/code/snippet614.html

Example

• #include <stdio.h>
• #include <errno.h>
• #include <math.h>
• void test(double value) {
• double ret;
• errno = 0;
• ret = sqrt(value);
• if (errno)
• {
• perror("sqrt");
• }

• else
• {
• printf("ret = %g\n", ret);
• }
• }
• int main() {
• test(-25);
• test(25);
• }

Source : http://www.daniweb.com/code/snippet614.html

sqrt: Numerical argument out of domain

