Version Control

EECS 2311 - Software Development Project

January 11, 2017

UNIVERSITE
||||||||||

Scenario 1

* You finished the assignment at home

* You get to York to submit and realize you did not upload
it

* Has this ever happened to you?

UNIVERSITE
||||||||||

Scenario 2

* Your program works pretty well

* You make a lot of improvements ...
e ...but you haven't gotten them to work yet

* You need to demo your program now

UNIVERSITE
||||||||||

Scenario 3

* You are working on the 2.0 version of “your great app.”
But 2.0 does not quite compile yet... and customer finds
a critical bug in 1.0, which must be fixed ASAP.

 If you're smart, you have a copy of your 1.0 source. You
make the change and release, but how do you merge
your changes into your 2.0 code?

 If you're not so smart, you have NO source code saved.
You have no way to track down the bug, and you lose
face until 2.0 is ready.

UNIVERSITE
||||||||||

Scenario 4

You change one part of a program - it works

Your teammate changes another part - it works

You put them together - it does not work

What were all the changes?

UNIVERSITE
||||||||||

Scenario 5

* You make a number of improvements to a class

 Your teammate makes a number of different
Improvements to the same class

 How can you merge these changes?

UNIVERSITE
||||||||||

A poor solution

« There are a number of tools that help you spot changes
(differences) between two files, such as diff

« Of course, they won't help unless you kept a copy of the
older version

 Differencing tools are useful for finding a small number
of differences in a few files

A better solution...

UNIVERSITE
||||||||||

Version control systems

« Keep multiple (older and newer) versions of everything
(not just source code)

 Request comments regarding every change
« Display differences between versions

+ Allow merging of changes on the same file

UNIVERSITE
||||||||||

Centralized Version Control

« Traditional version control system
» Server with database
« Clients have a working version

 Examples
e CVS
e Subversion

« Challenges
» Multi-developer conflicts
» Client/server communication

UNIVERSITE
||||||||||

10

Distributed Version Control

* Authoritative server by convention only

* Every working checkout is a repository

« Get version control even when detached
« Backups are trivial

« Examples
- Git
» Bitkeeper

UNIVERSITE
||||||||||

1"

Terminology

* Arepository contains several branches
* The main branch is called the master

 Branches break off from the master to try something
new, e.g. a new feature, code restructuring etc.

* Branches can be merged with other branches or into the
master

« Tags are usually official releases that have to be
supported

UNIVERSITE
IIIIIIIIII

12

Let's work with git

* We need to do the following:

Create a repository online

Create a local repository, add a project to it, and push it to
the online repository

All team members get the online repository

Changes pushed by one team member can now be pulled
by all

UNIVERSITE
||||||||||

13

Once per team

Go to github.com
Sign up for a new account
Create a new repository

Copy the URL to access your repository

UNIVERSITE
||||||||||

14

Once per team

 Run Eclipse

« Create a new project called ProjectWithGit that contains
a main method that prints “Fun with Git”

e Go to Window -> Preferences -> Team -> Git ->
Configuration

« Click Add Entry, add the pair [user.name, yourname |
» Click Add Entry, add the pair [user.email, youremail]

 These should be the same as the ones used at
github.com

« Click Apply, then OK YORK

UNIVERSITE
||||||||||

15

Once per team

* Rightclick on ProjectWithGit, and select Team->Share
Project...

« Select Git, and hit Next
« Click on Create...
* Provide a name for your local repository, and click Finish

* Your local repository is now setup.

UNIVERSITE
||||||||||

16

Once per team

* Rightclick on ProjectWithGit and select Team ->
Commit...

 Provide name, emaill

 Add a commit message

* |tis important that you add a message every time you
commit, makes it much easier to find a version later

« Select all files, and click Commit

« Close editors, reopen, make a change to the output of
your program and Commit again

UNIVERSITE
||||||||||

17

Once per team

* Rightclick on ProjectWithGit, select Team -> Remote ->
Push...

« Copy the URL from github.com in the URI field

« Enter your github.com username and password, click
Next

« Select master from the Source ref pull down menu

* Click on Add All Branches Spec

e Click Finish, then OK

* You should be able to see ProjectWithGit in github.com

UNIVERSITE
||||||||||

18

Once per team

 Due to an Eclipse bug, it is now easier to delete the
local repository, and re-get it from github.com along with
the other team members

* Rightclick on ProjectWithGit in Eclipse, and select
Delete.

« Select to delete project contents on disk, and click OK.

UNIVERSITE
||||||||||

19

All team members

* Go to File -> Import -> Git -> Projects from Git
» Click Next, select Clone URI, click Next

« Copy the URL from github.com on the URI field
« Keep clicking Next, and finally Finish

* You now have a copy of the project in your local
repository

* To push changes to the remote repository, you will need
a github.com account that is added as a collaborator

UNIVERSITE
||||||||||

20

Push

 Make some changes to any of the classes in the project

* Rightclick on any element that has changes (could be
the whole project), and select Team -> Commit

 Add a commit message

 If you do not want to publish the changes yet, click
Commit

 If they are ready to be published, click Commit and Push

UNIVERSITE
||||||||||

21

Pull

* To get changes published by other team members,
rightclick on the project, and select Team -> Pull

UNIVERSITE
||||||||||

22

Lab Task

» Get git working for every team member
» This should be for code / documents / notes etc.

« Demonstrate that everybody can pull / push code on
Monday’s lab

UNIVERSITE
||||||||||

