|EECS3611 Analog Integrated Circuit Design

Lecture 2

Introduction of Silicon Processing, Layout and Design Rules

Circuit View

Photo-Lithographic Process

Patterning of SiO2

(a) Base material: p+ substrate with p-epi layer

(b) After deposition of gate-oxide and sacrificial nitride (acts as a buffer layer)

(c) After plasma etch of insulating trenches using the inverse of the active area mask

MOSFET and layout

Cross-section of a CMOS Process

Transistor Layout

Transistor Layout

- A MOS transistor is simply a cross of two rectangles: active (diffusion) region and polysilicon gate.
- Make source and drain connection.
- Make substrate (well) contacts.

Multi Finger Transistor

Passive Devices in CMOS

- Passive devices, i.e. resistors, capacitors and inductors, are essential component in analog circuits.
- For analog IC, passive device occupies larger silicon area than MOSFET does.
- Only small-value capacitor and inductor are available in CMOS process.
- Try to avoid passive devices in analog IC.
 - Use transistor in linear region to replace the resistor.
 - Use gate capacitance to replace the capacitor.

Passive Devices Implementation

- For small value capacitors, we can use MIM (metal insulator metal) capacitor or PIP (poly insulator poly) capacitor.
- MIM cap is not a standard CMOS process step → needs additional masks and process steps.
- Small unit capacitance \rightarrow usually around 1fF/µm².
- Larger process variation -- ±20%.

Passive Devices Implementation

- For resistor, we can use poly resistor (sheet resistance) ~100-1000 Ω/square).
- Low resistivity \rightarrow larger area for high resistance value resistor.
- Larger process variation -- ±20%.
- Parasitic capacitance to substrate.

 $R = \frac{L}{Wd}\rho$

 $R_0 = \frac{\rho}{d}$

Design Rules

- Interface between the circuit designer and process engineer.
- Guidelines for constructing process masks.
- Unit dimension: minimum line width
 - scalable design rules: lambda parameter
 - absolute dimensions: micron rules
- Rules constructed to ensure that design works even when small fabrication errors (within some tolerance) occur.
- A complete set includes:
 - set of layers
 - intra-layer: relations between objects in the same layer
 - inter-layer: relations between objects on different layers

Layers in a Process

Color	Representation
Yellow	
Green	
Green	£3
Red	
Blue	
Magenta	
Black	
Black	
Black	
	Color Yellow Green Green Red Blue Magenta Black Black Black

Intra-Layer Rules

- Minimum dimensions (e.g., widths) of objects on each layer to maintain that object after fabrication.
 - minimum line width is set by the resolution of the patterning process (photolithography).
- Minimum spaces between objects (that are *not* related) on the same layer to ensure they will not short after fabrication.

Intra-Layer Design Rules

Inter-Layer Design Rules

Layout Editor-Cadence Virtuoso

- Layout editor is the layout tools helps to generate the mask patterns.
- It uses different colors and patterns to represent different layers in the mask.
- The output data is normally in GDSII format, which is the final result of the design.

Design Rule Check

- Analog design is not fully automated → errors are inevitable.
- Design rule check (DRC) checks whether the layout violates any design rules.
- DRC can give you feedback on the violations.
- Re-draw the layout and redo the DRC until no DRC errors reported.

poly_not_fet to all_diff minimum spacing = 0.14 um.

Layout vs. Schematic Check

- Layout vs. Schematic Check (LVS) checks whether the layout corresponds with the schematic.
- LVS compares the netlist generated from the schematic with the netlist generated from the layout patterns and gives the comparison result.
- LVS checks the electrical connections as well as the device parameters.
- Design must be DRC and LVS clean → no DRC and LVS errors.
- Tape-out—send the GDSII data to fabrication.

ESD Protection

- ESD stands for Electrostatic Discharge. It is the electrical static charge transfer between two objects with different potentials.
- The ESD can cause large current and destroy semiconductor devices.
- MOSFET gates are very high impedance nodes→ sensitive to ESD.
- To prevent the ESD damaging the devices, a circuit called ESD protection circuit is added inside the IC.

ESD Protection Circuit

The basic idea is using the voltage clamp to limit the voltage on all bonding pads.

 V_{DD}

ESD Protection Using Diodes

Packaging

Packaging Requirements

- Electrical: Low parasitics
- Mechanical: Reliable and robust
- Thermal: Efficient heat removal
- Economical: Cheap

Wire Bonding

Flip-Chip Bonding

Substrate