
Testing on Steriods
EECS 4315

www.cse.yorku.ca/course/4315/

www.cse.yorku.ca/course/4315/ EECS 4315 1 / 30

www.cse.yorku.ca/course/4315/
www.cse.yorku.ca/course/4315/

How to Test Code?

input
// Code

output
//

Provide the input.
Run the code.
Compare the output with the expected output.

www.cse.yorku.ca/course/4315/ EECS 4315 2 / 30

www.cse.yorku.ca/course/4315/

White Box Testing

input
// public class . . .

output
//

www.cse.yorku.ca/course/4315/ EECS 4315 3 / 30

www.cse.yorku.ca/course/4315/

Black Box Testing

input
// Code

output
//

www.cse.yorku.ca/course/4315/ EECS 4315 4 / 30

www.cse.yorku.ca/course/4315/

Why Black Box Testing?

A Java archive (JAR) file usually only contains the bytecode
and not the Java code.

Developers can obfuscate JAR files so that a user of the JAR
file does not get much information regarding the original Java
code.

www.cse.yorku.ca/course/4315/ EECS 4315 5 / 30

www.cse.yorku.ca/course/4315/

Which Test Cases?

Likely cases (black box and white box testing).
Boundary cases (black box and white box testing).
Cases that cover all branches (white box testing only).
Cases that cover all execution paths (white box testing
only).

www.cse.yorku.ca/course/4315/ EECS 4315 6 / 30

www.cse.yorku.ca/course/4315/

Unit Testing

A unit test is designed to test a single unit of code, for example,
a method.

Such a test should be automated as much as possible; ideally,
it should require no human interaction in order to run, should
assess its own results, and notify the programmer only when it
fails.

A class that contains unit tests is known as a test case.

The code to be tested is known as the unit under test.

www.cse.yorku.ca/course/4315/ EECS 4315 7 / 30

www.cse.yorku.ca/course/4315/

JUnit

JUnit is a Java unit testing framework written by Kent Beck and
Erich Gamma.

JUnit is available at www.junit.org.

www.cse.yorku.ca/course/4315/ EECS 4315 8 / 30

www.junit.org
www.cse.yorku.ca/course/4315/

Kent Beck

Kent Beck is an American soft-
ware engineer and the creator of
the Extreme Programming and Test
Driven Development software de-
velopment. He works at Facebook.

source: Three Rivers Institute

www.cse.yorku.ca/course/4315/ EECS 4315 9 / 30

www.cse.yorku.ca/course/4315/

Erich Gamma

Erich Gamma is a Swiss com-
puter scientist and member of the
“Gang of Four” who wrote the in-
fluential software engineering text-
book “Design Patterns: Elements
of Reusable Object-Oriented Soft-
ware.” He works at Microsoft.

source: Pearson

www.cse.yorku.ca/course/4315/ EECS 4315 10 / 30

www.cse.yorku.ca/course/4315/

Java Annotations

Annotations provide data about code that is not part of the code
itself. Therefore, it is also called metadata.

In its simplest form, an annotation looks like

@Deprecated

(The annotation type Deprecated is part of java.lang and,
therefore, need not be imported.)

An annotation can include elements and their values:

@Test(timeout=1000)

(The annotation type Test is part of org.junit and,
therefore, needs to be imported.)

www.cse.yorku.ca/course/4315/ EECS 4315 11 / 30

www.cse.yorku.ca/course/4315/

A Test Case

import org.junit.Assert;
import org.junit.Test;

public class ...
{

@Test
public void ...()
{

...
}

@Test
public void ...()
{

...
}

}
www.cse.yorku.ca/course/4315/ EECS 4315 12 / 30

www.cse.yorku.ca/course/4315/

Names of Test Methods

It is good practice to use descriptive names for the test
methods. This makes tests more readable when they are
looked at later.

www.cse.yorku.ca/course/4315/ EECS 4315 13 / 30

www.cse.yorku.ca/course/4315/

Assertions in Test Methods

Each test method should contain (at least) one assertion: an
invocation of a method of the Assert class of the org.unit
package.

Do not confuse these assertions with Java’s assert statement.

www.cse.yorku.ca/course/4315/ EECS 4315 14 / 30

http://junit.sourceforge.net/javadoc/org/junit/Assert.html
www.cse.yorku.ca/course/4315/

Methods of the Assert Class

assertEquals(long, long)

assert that the two are the same.

assertEquals(String, long, long)

assert that the two are the same; if not, the message is used.

www.cse.yorku.ca/course/4315/ EECS 4315 15 / 30

www.cse.yorku.ca/course/4315/

Methods of the Assert Class

assertEquals(double, double, double)
assertEquals(String, double, double, double)

The method invocation

Assert.assertEquals(expected, actual, delta)

asserts
|expected− actual|< delta

www.cse.yorku.ca/course/4315/ EECS 4315 16 / 30

www.cse.yorku.ca/course/4315/

Methods of the Assert Class

assertEquals(Object, Object)
assertEquals(String, Object, Object)

asserts that the objects are equal according to the equals
method.

assertSame(Object, Object)
assertSame(String, Object, Object)

asserts that the objects are equal according to the == operator.

www.cse.yorku.ca/course/4315/ EECS 4315 17 / 30

www.cse.yorku.ca/course/4315/

Methods of the Assert Class

assertTrue(boolean)
assertTrue(String, boolean)

asserts that the condition is true.

assertFalse(boolean)
assertFalse(String, boolean)

asserts that the condition is false.

www.cse.yorku.ca/course/4315/ EECS 4315 18 / 30

www.cse.yorku.ca/course/4315/

Methods of the Assert Class

assertNull(Object)
assertNull(String, Object)

asserts that the object is null.

assertNotNull(Object)
assertNotNull(String, Object)

asserts that the object is not null.

www.cse.yorku.ca/course/4315/ EECS 4315 19 / 30

www.cse.yorku.ca/course/4315/

Timeout

Cause a test to fail if it takes longer than a specified time in
milliseconds:

@Test(timeout=1000)
public void ...()
{

...
}

www.cse.yorku.ca/course/4315/ EECS 4315 20 / 30

www.cse.yorku.ca/course/4315/

Exceptions

Cause a test to fail if a specified exception is not thrown:

@Test(expected=NumberFormatException.class)
public void ...()
{

...
}

www.cse.yorku.ca/course/4315/ EECS 4315 21 / 30

www.cse.yorku.ca/course/4315/

Body of Unit Test Method

1 Create some objects.
2 Invoke methods on them.
3 Check the results using a method of the Assert class.

www.cse.yorku.ca/course/4315/ EECS 4315 22 / 30

www.cse.yorku.ca/course/4315/

Test Case

For each method and constructor (from simplest to most
complex)

1 Study its API.
2 Create unit tests.

www.cse.yorku.ca/course/4315/ EECS 4315 23 / 30

www.cse.yorku.ca/course/4315/

Writing a Test Suite

A test suite comprises one or more tests, grouping them so that
they can be run together.

Create a test suite using the @RunWith and
@Suite.SuiteClasses annotations. Both annotations are
part of the packages org.junit.runner and
org.junit.runners and, hence, need to be imported.

www.cse.yorku.ca/course/4315/ EECS 4315 24 / 30

www.cse.yorku.ca/course/4315/

Writing a Test Suite

import org.junit.runner.RunWith;
import org.junit.runners.Suite;

@RunWith(Suite.class)
@Suite.SuiteClasses({....class,class})
public class ... { }

www.cse.yorku.ca/course/4315/ EECS 4315 25 / 30

www.cse.yorku.ca/course/4315/

Running a Test Suite

import java.io.PrintStream;
import org.junit.runner.JUnitCore;
import org.junit.runner.Result;
import org.junit.runner.notification.Failure;

public class ...
{

public static void main(String[] args)
{

PrintStream output = System.out;
Result result = JUnitCore.runClasses(....class);
for (Failure failure : result.getFailures())
{
output.println(failure.getMessage());
output.println(failure.getException());

}

www.cse.yorku.ca/course/4315/ EECS 4315 26 / 30

www.cse.yorku.ca/course/4315/

Running a Test Suite (continued)

if (result.wasSuccessful())
{
output.println("All tests passed.");

}
}

}

www.cse.yorku.ca/course/4315/ EECS 4315 27 / 30

www.cse.yorku.ca/course/4315/

Testing a main Method

@Test
public void test()
{

// command line arguments
String[] args = {};
// input given by the user via the keyboard
String user = "...";

// set up input and output
ByteArrayInputStream input =
new ByteArrayInputStream(user.getBytes());

System.setIn(input);
ByteArrayOutputStream output =
new ByteArrayOutputStream();

PrintStream stream = new PrintStream(output);
System.setOut(stream);

www.cse.yorku.ca/course/4315/ EECS 4315 28 / 30

www.cse.yorku.ca/course/4315/

Testing a main Method (continued)

// call the main method
ClassName.main(args);

// verify the output
String expected = "...";
String actual = output.toString();
Assert.assertEquals(expected, actual);

}

www.cse.yorku.ca/course/4315/ EECS 4315 29 / 30

www.cse.yorku.ca/course/4315/

JUnit and Eclipse

To add JUnit to a project, select its properties (select
“Properties” from the “Project” menu option) and select the
“Java Build Path,” “Libraries” tab. Press the “Add Library . . . ”
button and then choose “JUnit.” Click the “Next” button, and on
the next dialog select “JUnit 4” from the drop-down list.

A JUnit test case class can be run by right-clicking on the test
class and selecting “Run As . . . ” and “JUnit Test.”

www.cse.yorku.ca/course/4315/ EECS 4315 30 / 30

www.cse.yorku.ca/course/4315/

