
Concurrency
EECS 4315

www.cse.yorku.ca/course/4315/

www.cse.yorku.ca/course/4315/ EECS 4315 1 / 21

www.cse.yorku.ca/course/4315/
www.cse.yorku.ca/course/4315/


Counter Class

Problem
Implement the class Counter with

attribute value,
initialized to zero, and
the methods increment and decrement.

Question
Can multiple threads share a Counter object and use methods
such as increment and decrement concurrently?

Answer
No, as before, if two threads invoke increment concurrently,
the counter may only be incremented by one (rather than two).

www.cse.yorku.ca/course/4315/ EECS 4315 2 / 21

www.cse.yorku.ca/course/4315/


Counter Class

Problem
Implement the class Counter with

attribute value,
initialized to zero, and
the methods increment and decrement.

Question
Can multiple threads share a Counter object and use methods
such as increment and decrement concurrently?

Answer
No, as before, if two threads invoke increment concurrently,
the counter may only be incremented by one (rather than two).

www.cse.yorku.ca/course/4315/ EECS 4315 2 / 21

www.cse.yorku.ca/course/4315/


Counter Class

Problem
Implement the class Counter with

attribute value,
initialized to zero, and
the methods increment and decrement.

Question
Can multiple threads share a Counter object and use methods
such as increment and decrement concurrently?

Answer
No, as before, if two threads invoke increment concurrently,
the counter may only be incremented by one (rather than two).

www.cse.yorku.ca/course/4315/ EECS 4315 2 / 21

www.cse.yorku.ca/course/4315/


Synchronized Methods

Methods such as increment should be executed atomically.
This can be accomplished by declaring the method to be
synchronized.

A lock is associated with every object. For threads to execute a
synchronized method on such the object, first its lock needs to
be acquired.

public synchronized void increment()
{

this.value++;
}

www.cse.yorku.ca/course/4315/ EECS 4315 3 / 21

www.cse.yorku.ca/course/4315/


Synchronized Methods

Methods such as increment should be executed atomically.
This can be accomplished by declaring the method to be
synchronized.

A lock is associated with every object. For threads to execute a
synchronized method on such the object, first its lock needs to
be acquired.

public synchronized void increment()
{

this.value++;
}

www.cse.yorku.ca/course/4315/ EECS 4315 3 / 21

www.cse.yorku.ca/course/4315/


Resource Class

Problem
Implement the class Resource with

attribute available,
initialized to true, and
the methods acquire and release.

www.cse.yorku.ca/course/4315/ EECS 4315 4 / 21

www.cse.yorku.ca/course/4315/


Wait and Notify

The Object class contains the following three methods:
wait: causes the current thread to wait until another
thread wakes it up.
notify: wakes up a single thread waiting on this object’s
lock; if there is more than one waiting, an arbitrary one is
chosen; if there are none, nothing is done.
notifyAll: wakes up all threads waiting on this objects
lock.

Since every class extends the class Object, these methods are
available to every object.

www.cse.yorku.ca/course/4315/ EECS 4315 5 / 21

www.cse.yorku.ca/course/4315/


Wait and Notify

The Object class contains the following three methods:
wait: causes the current thread to wait until another
thread wakes it up.
notify: wakes up a single thread waiting on this object’s
lock; if there is more than one waiting, an arbitrary one is
chosen; if there are none, nothing is done.
notifyAll: wakes up all threads waiting on this objects
lock.

Since every class extends the class Object, these methods are
available to every object.

www.cse.yorku.ca/course/4315/ EECS 4315 5 / 21

www.cse.yorku.ca/course/4315/


States of a Thread

runnablerunnable runningrunning

blockedblocked

waitnotify

www.cse.yorku.ca/course/4315/ EECS 4315 6 / 21

www.cse.yorku.ca/course/4315/


Counter Class

public class Counter extends Thread
{

private int value;

public Counter()
{

this.value = 0;
}

...

}

www.cse.yorku.ca/course/4315/ EECS 4315 7 / 21

www.cse.yorku.ca/course/4315/


Counter Class

public void run()
{

this.value++;
}

0: aload_0
1: dup
2: getfield
5: iconst_1
6: iadd
7: putfield
10: return

www.cse.yorku.ca/course/4315/ EECS 4315 8 / 21

www.cse.yorku.ca/course/4315/


Main Class

public class Main
{

public static void main(String[] args)
{

Counter one = new Counter();
Counter two = new Counter();
one.start();
two.start();

}
}

0: new 11: dup 20: aload_2
3: dup 12: invokespecial 21: invokevirtual
4: invokespecial 15: astore_2 24: return
7: astore_1 16: aload_1
8: new 17: invokevirtual

www.cse.yorku.ca/course/4315/ EECS 4315 9 / 21

www.cse.yorku.ca/course/4315/


State-Transition Diagram

Question
Draw the corresponding state-transition diagram.

www.cse.yorku.ca/course/4315/ EECS 4315 10 / 21

www.cse.yorku.ca/course/4315/


State-Transition Diagram

new dup invokespecial astore_1 new

www.cse.yorku.ca/course/4315/ EECS 4315 11 / 21

www.cse.yorku.ca/course/4315/


State-Transition Diagram

dup invokespecial astore_2 aload_1 invokevirtual

www.cse.yorku.ca/course/4315/ EECS 4315 12 / 21

www.cse.yorku.ca/course/4315/


A Smaller Model

Combine the first ten transitions into one.

new . . . invokevirtual

The actions of the labelled transition system are sequences of
bytecode instructions.

www.cse.yorku.ca/course/4315/ EECS 4315 13 / 21

www.cse.yorku.ca/course/4315/


A Smaller Model

Combine the first ten transitions into one.

new . . . invokevirtual

The actions of the labelled transition system are sequences of
bytecode instructions.

www.cse.yorku.ca/course/4315/ EECS 4315 13 / 21

www.cse.yorku.ca/course/4315/


A Smaller Model

Combine the first ten transitions into one.

new . . . invokevirtual

The actions of the labelled transition system are sequences of
bytecode instructions.

www.cse.yorku.ca/course/4315/ EECS 4315 13 / 21

www.cse.yorku.ca/course/4315/


State-Transition Diagram

new . . . invokevirtual

Next instructions for the main thread:

20: aload_2
21: invokevirtual
24: return

Next instructions for the thread one:

0: aload_0
1: dup
2: getfield
5: iconst_1
6: iadd
7: putfield

www.cse.yorku.ca/course/4315/ EECS 4315 14 / 21

www.cse.yorku.ca/course/4315/


State-Transition Diagram

Question
Can the bytecode instructions corresponding to the run
invocation be modelled as a single transition?

Answer
Yes.

Question
Why?

Answer
Because the execution of this method does not impact the
other threads.

www.cse.yorku.ca/course/4315/ EECS 4315 15 / 21

www.cse.yorku.ca/course/4315/


State-Transition Diagram

Question
Can the bytecode instructions corresponding to the run
invocation be modelled as a single transition?

Answer
Yes.

Question
Why?

Answer
Because the execution of this method does not impact the
other threads.

www.cse.yorku.ca/course/4315/ EECS 4315 15 / 21

www.cse.yorku.ca/course/4315/


State-Transition Diagram

Question
Can the bytecode instructions corresponding to the run
invocation be modelled as a single transition?

Answer
Yes.

Question
Why?

Answer
Because the execution of this method does not impact the
other threads.

www.cse.yorku.ca/course/4315/ EECS 4315 15 / 21

www.cse.yorku.ca/course/4315/


State-Transition Diagram

Question
Can the bytecode instructions corresponding to the run
invocation be modelled as a single transition?

Answer
Yes.

Question
Why?

Answer
Because the execution of this method does not impact the
other threads.

www.cse.yorku.ca/course/4315/ EECS 4315 15 / 21

www.cse.yorku.ca/course/4315/


Combining Bytecode Instructions

We combine the first ten bytecode instructions since there
is only one thread.
We combine the bytecode instructions corresponding to
the run invocation because those do not impact the other
threads.

General idea
Combine those bytecode instructions that do not impact other
threads.

www.cse.yorku.ca/course/4315/ EECS 4315 16 / 21

www.cse.yorku.ca/course/4315/


Combining Bytecode Instructions

We combine the first ten bytecode instructions since there
is only one thread.
We combine the bytecode instructions corresponding to
the run invocation because those do not impact the other
threads.

General idea
Combine those bytecode instructions that do not impact other
threads.

www.cse.yorku.ca/course/4315/ EECS 4315 16 / 21

www.cse.yorku.ca/course/4315/


Combining Bytecode Instructions

Problem
Given all the bytecode instructions, determine for a specific
instruction whether it impacts other threads.

Question
Give an algorithm that solves the problem.

Question
Impossible!

www.cse.yorku.ca/course/4315/ EECS 4315 17 / 21

www.cse.yorku.ca/course/4315/


Combining Bytecode Instructions

Problem
Given all the bytecode instructions, determine for a specific
instruction whether it impacts other threads.

Question
Give an algorithm that solves the problem.

Question
Impossible!

www.cse.yorku.ca/course/4315/ EECS 4315 17 / 21

www.cse.yorku.ca/course/4315/


Combining Bytecode Instructions

Problem
Given all the bytecode instructions, determine for a specific
instruction whether it impacts other threads.

Question
Give an algorithm that solves the problem.

Question
Impossible!

www.cse.yorku.ca/course/4315/ EECS 4315 17 / 21

www.cse.yorku.ca/course/4315/


Proving Impossibility

Question
Which other problems cannot be solved?

Answer
The halting problem: given code and input for that code,
determine whether the code terminates.

www.cse.yorku.ca/course/4315/ EECS 4315 18 / 21

www.cse.yorku.ca/course/4315/


Proving Impossibility

Question
Which other problems cannot be solved?

Answer
The halting problem: given code and input for that code,
determine whether the code terminates.

www.cse.yorku.ca/course/4315/ EECS 4315 18 / 21

www.cse.yorku.ca/course/4315/


Proving Impossibility

Problem
Given all the bytecode instructions, determine for a specific
instruction whether it impacts other threads.

Question
Prove that the problem cannot be solved.

www.cse.yorku.ca/course/4315/ EECS 4315 19 / 21

www.cse.yorku.ca/course/4315/


Combining Bytecode Instructions

General idea
Combine those bytecode instructions for which we can prove
that they do not impact other threads.

The idea of combining consecutive transitions labelled with
invisible (outside the current thread) actions into a single
transition is due to Patrice Godefroid.

Examples of invisible actions
Reading or writing an attribute that can be proved to be not
shared.
Reading or writing a local variable.
. . .

www.cse.yorku.ca/course/4315/ EECS 4315 20 / 21

www.cse.yorku.ca/course/4315/


Combining Bytecode Instructions

General idea
Combine those bytecode instructions for which we can prove
that they do not impact other threads.

The idea of combining consecutive transitions labelled with
invisible (outside the current thread) actions into a single
transition is due to Patrice Godefroid.

Examples of invisible actions
Reading or writing an attribute that can be proved to be not
shared.
Reading or writing a local variable.
. . .

www.cse.yorku.ca/course/4315/ EECS 4315 20 / 21

www.cse.yorku.ca/course/4315/


Combining Bytecode Instructions

General idea
Combine those bytecode instructions for which we can prove
that they do not impact other threads.

The idea of combining consecutive transitions labelled with
invisible (outside the current thread) actions into a single
transition is due to Patrice Godefroid.

Examples of invisible actions
Reading or writing an attribute that can be proved to be not
shared.
Reading or writing a local variable.
. . .

www.cse.yorku.ca/course/4315/ EECS 4315 20 / 21

www.cse.yorku.ca/course/4315/


Patrice Godefroid

Ph.D. degree in Computer
Science from the University
of Liege, Belgium
Worked at Bell Laboratories.
Currently at Microsoft
Research.

Source: Patrice Godefroid

www.cse.yorku.ca/course/4315/ EECS 4315 21 / 21

www.cse.yorku.ca/course/4315/

