
Concurrency
EECS 4315

www.cse.yorku.ca/course/4315/

www.cse.yorku.ca/course/4315/ EECS 4315 1 / 14

www.cse.yorku.ca/course/4315/
www.cse.yorku.ca/course/4315/


The Readers-Writers Problem

The readers and writers problem, due to Courtois, Heymans
and Parnas, is a classical concurrency problem. It models
access to a database. There are many competing threads
wishing to read from and write to the database. It is acceptable
to have multiple threads reading at the same time, but if one
thread is writing then no other thread may either read or write.
A thread can only write if no thread is reading.

www.cse.yorku.ca/course/4315/ EECS 4315 2 / 14

www.cse.yorku.ca/course/4315/


David Parnas

Canadian early pioneer of
software engineering
Ph.D. from Carnegie Mellon
University
Taught at the University of
North Carolina at Chapel Hill,
the Technische Universität
Darmstadt, the University of
Victoria, Queen’s University,
McMaster University, and
University of Limerick
Won numerous awards
including ACM SIGSOFT’s
“Outstanding Research”
award

David Parnas
source: Hubert Baumeister

www.cse.yorku.ca/course/4315/ EECS 4315 3 / 14

www.cse.yorku.ca/course/4315/


Pierre-Jacques Courtois

Professor emeritus at the
Catholic University of Leuven

Pierre-Jacques Courtois
source: www.info.ucl.ac.be/~courtois

www.cse.yorku.ca/course/4315/ EECS 4315 4 / 14

www.cse.yorku.ca/course/4315/


The Readers-Writers Problem

public class Reader extends Thread {
private Database database;

public Reader(Database database) {
this.database = database;

}

public void run() {
while (true) {
try {

this.database.read();
} catch (InterruptedException e) {

e.printStackTrace();
}

}
}

}
www.cse.yorku.ca/course/4315/ EECS 4315 5 / 14

www.cse.yorku.ca/course/4315/


The Readers-Writers Problem

public class Database {
...

public Database() { ... }
public void read() { ... }
public void write() { ... }

}

www.cse.yorku.ca/course/4315/ EECS 4315 6 / 14

www.cse.yorku.ca/course/4315/


The Readers-Writers Problem

Question
If we make both methods synchronized, does that solve the
problem?

Answer
Yes.

Question
Is it a satisfactory solution?

Answer
No.

www.cse.yorku.ca/course/4315/ EECS 4315 7 / 14

www.cse.yorku.ca/course/4315/


The Readers-Writers Problem

Question
If we make both methods synchronized, does that solve the
problem?

Answer
Yes.

Question
Is it a satisfactory solution?

Answer
No.

www.cse.yorku.ca/course/4315/ EECS 4315 7 / 14

www.cse.yorku.ca/course/4315/


The Readers-Writers Problem

Question
If we make both methods synchronized, does that solve the
problem?

Answer
Yes.

Question
Is it a satisfactory solution?

Answer
No.

www.cse.yorku.ca/course/4315/ EECS 4315 7 / 14

www.cse.yorku.ca/course/4315/


The Readers-Writers Problem

Question
If we make both methods synchronized, does that solve the
problem?

Answer
Yes.

Question
Is it a satisfactory solution?

Answer
No.

www.cse.yorku.ca/course/4315/ EECS 4315 7 / 14

www.cse.yorku.ca/course/4315/


The Readers-Writers Problem

Question
Why is it not satisfactory?

Answer
It does not allow multiple readers to read at the same time.

www.cse.yorku.ca/course/4315/ EECS 4315 8 / 14

www.cse.yorku.ca/course/4315/


The Readers-Writers Problem

Question
Why is it not satisfactory?

Answer
It does not allow multiple readers to read at the same time.

www.cse.yorku.ca/course/4315/ EECS 4315 8 / 14

www.cse.yorku.ca/course/4315/


The Readers-Writers Problem

Questions to consider when solving this problem:
Of which information do we need to keep track?
When does a reader have to wait?
When does a writer have to wait?
Who notifies a waiting writer?
Who notifies a waiting reader?

www.cse.yorku.ca/course/4315/ EECS 4315 9 / 14

www.cse.yorku.ca/course/4315/


The Dining Philosophers Problem

In the dining philosophers problem, due to Dijkstra, five
philosophers are seated around a round table. Each
philosopher has a plate of spaghetti. The spaghetti is so
slippery that a philosopher needs two forks to eat it. The layout
of the table is as follows.

The life of a philosopher consists of alternative periods of
eating and thinking. When philosophers get hungry, they try to
pick up their left and right fork, one at a time, in either order. If
successful in picking up both forks, the philosopher eats for a
while, then puts down the forks and continues to think.

www.cse.yorku.ca/course/4315/ EECS 4315 10 / 14

www.cse.yorku.ca/course/4315/


The Dining Philosophers Problem

public class Philosopher {
private int id;
private Table table;

public Philosopher(int id, Table table) {
this.id = id;
this.table = table;

}
public void run() {
while (true) {
this.table.pickUp(id);
this.table.pickUp(id + 1 % 5);
// eat
this.table.putDown(id);
this.table.putDown(id + 1 % 5);

}
}

www.cse.yorku.ca/course/4315/ EECS 4315 11 / 14

www.cse.yorku.ca/course/4315/


The Dining Philosophers Problem

public class Table {
public void pickUp(int id) { ... }
public void putDown(int id) { ... }

}

www.cse.yorku.ca/course/4315/ EECS 4315 12 / 14

www.cse.yorku.ca/course/4315/


The Dining Philosophers Problem

Question
If we make both methods synchronized, does that solve the
problem?

Answer
No.

Question
Why not?

Answer
Deadlock.

www.cse.yorku.ca/course/4315/ EECS 4315 13 / 14

www.cse.yorku.ca/course/4315/


The Dining Philosophers Problem

Question
If we make both methods synchronized, does that solve the
problem?

Answer
No.

Question
Why not?

Answer
Deadlock.

www.cse.yorku.ca/course/4315/ EECS 4315 13 / 14

www.cse.yorku.ca/course/4315/


The Dining Philosophers Problem

Question
If we make both methods synchronized, does that solve the
problem?

Answer
No.

Question
Why not?

Answer
Deadlock.

www.cse.yorku.ca/course/4315/ EECS 4315 13 / 14

www.cse.yorku.ca/course/4315/


The Dining Philosophers Problem

Question
If we make both methods synchronized, does that solve the
problem?

Answer
No.

Question
Why not?

Answer
Deadlock.

www.cse.yorku.ca/course/4315/ EECS 4315 13 / 14

www.cse.yorku.ca/course/4315/


Drop deadline

Today.

www.cse.yorku.ca/course/4315/ EECS 4315 14 / 14

www.cse.yorku.ca/course/4315/

