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The Readers-Writers Problem

The readers and writers problem, due to Courtois, Heymans
and Parnas, is a classical concurrency problem. It models
access to a database. There are many competing threads
wishing to read from and write to the database. It is acceptable
to have multiple threads reading at the same time, but if one
thread is writing then no other thread may either read or write.
A thread can only write if no thread is reading.
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The Readers-Writers Problem

public class Reader extends Thread {
private Database database;

public Reader(Database database) {
this.database = database;

}

public void run() {
while (true) {
try {

this.database.read();
} catch (InterruptedException e) {

e.printStackTrace();
}

}
}

}
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The Readers-Writers Problem

public class Database {
...

public Database() { ... }
public void read() { ... }
public void write() { ... }

}
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The Readers-Writers Problem

Question
If we make both methods synchronized, does that solve the
problem?

Answer
Yes.

Question
Is it a satisfactory solution?

Answer
No.
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The Readers-Writers Problem

Question
Why is it not satisfactory?

Answer
It does not allow multiple readers to read at the same time.

www.cse.yorku.ca/course/4315/ EECS 4315 8 / 14

www.cse.yorku.ca/course/4315/


The Readers-Writers Problem

Question
Why is it not satisfactory?

Answer
It does not allow multiple readers to read at the same time.

www.cse.yorku.ca/course/4315/ EECS 4315 8 / 14

www.cse.yorku.ca/course/4315/


The Readers-Writers Problem

Questions to consider when solving this problem:
Of which information do we need to keep track?
When does a reader have to wait?
When does a writer have to wait?
Who notifies a waiting writer?
Who notifies a waiting reader?
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The Dining Philosophers Problem

In the dining philosophers problem, due to Dijkstra, five
philosophers are seated around a round table. Each
philosopher has a plate of spaghetti. The spaghetti is so
slippery that a philosopher needs two forks to eat it. The layout
of the table is as follows.

The life of a philosopher consists of alternative periods of
eating and thinking. When philosophers get hungry, they try to
pick up their left and right fork, one at a time, in either order. If
successful in picking up both forks, the philosopher eats for a
while, then puts down the forks and continues to think.
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The Dining Philosophers Problem

public class Philosopher {
private int id;
private Table table;

public Philosopher(int id, Table table) {
this.id = id;
this.table = table;

}
public void run() {
while (true) {
this.table.pickUp(id);
this.table.pickUp(id + 1 % 5);
// eat
this.table.putDown(id);
this.table.putDown(id + 1 % 5);

}
}
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The Dining Philosophers Problem

public class Table {
public void pickUp(int id) { ... }
public void putDown(int id) { ... }

}
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The Dining Philosophers Problem

Question
If we make both methods synchronized, does that solve the
problem?

Answer
No.

Question
Why not?

Answer
Deadlock.
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Drop deadline

Today.
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