Linear Temporal Logic EECS 4315

www.eecs.yorku.ca/course/4315/

www.eecs.yorku.ca/course/4315/ EECS 4315

э

Linear temporal logic (LTL) is a logic to reason about systems with nondeterminism.

The logic was introduced by Amir Pnueli.

A. Pnueli. The temporal logic of programs. In *Proceedings of the 18th IEEE Symposium on Foundations of Computer Science*, pages 46–67. Providence, RI, USA, October/November 1977. IEEE.

Amir Pnueli (1941-2009)

- Recipient of the Turing Award (1996)
- Recipient of the Israel prize (2000)
- Foreign Associate of the U.S. National Academy of Engineering (1999)
- Fellow of the Association for Computing Machinery (2007)

Source: David Monniaux

< ∃ →

Definition

LTL is defined by the following grammar.

$$f ::= a \mid f \land f \mid \neg f \mid \bigcirc f \mid f \cup f$$

where *a* is an atomic proposition.

An atomic proposition represents a basic property (such as the value of a particular variable being even).

An atomic proposition *a* is satisfied if *a* holds in the initial state of the execution path.

< ∃ >

The LTL formula $\bigcirc a$ (pronounced as next *a*) is satisfied if *a* holds in the next state of the execution path (that is, the second state).

The LTL formula $\bigcirc a$ (pronounced as next *a*) is satisfied if *a* holds in the next state of the execution path (that is, the second state).

The LTL formula $\bigcirc a$ (pronounced as next *a*) is satisfied if *a* holds in the next state of the execution path (that is, the second state).

The LTL formula $\bigcirc a$ (pronounced as next *a*) is satisfied if *a* holds in the next state of the execution path (that is, the second state).

The LTL formula $\bigcirc a$ (pronounced as next *a*) is satisfied if *a* holds in the next state of the execution path (that is, the second state).

The LTL formula $\bigcirc a$ (pronounced as next *a*) is satisfied if *a* holds in the next state of the execution path (that is, the second state).

The LTL formula $\bigcirc a$ (pronounced as next *a*) is satisfied if *a* holds in the next state of the execution path (that is, the second state).

The LTL formula $a \cup b$ (pronounced as a until b) is satisfied if b holds in some state of the execution path and a holds in all states before that state.

As usual

$$\begin{array}{rcl} \mathsf{true} &=& a \lor \neg a \\ f_1 \lor f_2 &=& \neg (\neg f_1 \land \neg f_2) \\ f_1 \Rightarrow f_2 &=& \neg f_1 \lor f_2 \end{array}$$

Also

$$\Diamond f$$
 = true U f (eventually f)
 $\Box f$ = $\neg \Diamond \neg f$ (always f)

æ

イロン イロン イヨン イヨン

Alternative syntax

$\begin{array}{rrrr} \mathsf{X}f & : & \bigcirc f \\ \mathsf{F}f & : & \Diamond f \\ \mathsf{G}f & : & \Box f \end{array}$

www.eecs.yorku.ca/course/4315/ EECS 4315

æ

ヘロト 人間 とくほ とくほ とう

Question

Draw the state space diagram of a model of a traffic light.

 $\langle \Box \rangle \langle \Box \rangle$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Question

Draw the state space diagram of a model of a traffic light.

Note: the transitions are not labelled, but the states are labelled.

► < Ξ ► ...</p>

Definition

A transition system is a tuple $\langle S, L, I, \rightarrow, \ell \rangle$ consisting of

- a set S of states,
- a set L of labels,
- A set $I \subseteq S$ of initial states,
- a transition relation $\rightarrow \subseteq S \times S$ such that for all $s \in S$ there exists a $s' \in S$ such that $s \rightarrow s'$, and
- a labelling function $\ell : S \to 2^L$.

2^{L} denotes the set of subsets of *L*.

Question

What is $2^{\{1,2,3\}}$?

æ

イロト イロト イヨト イヨト

Question

What is 2^{{1,2,3}?

Answer

$\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}.$

æ

ヘロト 人間 とくほとくほとう

Transition System

Question

Give the transition system modelling a traffic light.

æ

ヘロト 人間 とくほ とくほとう

Transition System

Question

Give the transition system modelling a traffic light.

Answer

$$\begin{split} & \langle \{1,2,3\}, \{\text{red}, \text{green}, \text{orange}\}, \\ & \{1\}, \{1 \rightarrow 2, 2 \rightarrow 3, 3 \rightarrow 1\} \\ & \{1 \mapsto \{\text{red}\}, 2 \mapsto \{\text{green}\}, 3 \mapsto \{\text{orange}\}\} \rangle \end{split}$$

Question

Which LTL formula expresses "initially the light is red."

э

Question

Which LTL formula expresses "initially the light is red."

Answer

The LTL formula red.

www.eecs.yorku.ca/course/4315/

EECS 4315

æ

Question

Which LTL formula expresses "initially the light is red and next it becomes green."

э

(E) < E) </p>

 $\langle \Box \rangle \langle \Box \rangle$

$$f ::= a \mid f \land f \mid \neg f \mid \bigcirc f \mid f \cup f$$

Question

Which LTL formula expresses "initially the light is red and next it becomes green."

Question

Which LTL formula expresses "the light becomes eventually orange."

э

$$f ::= a \mid f \land f \mid \neg f \mid \bigcirc f \mid f \cup f$$

Question

Which LTL formula expresses "the light becomes eventually orange."

Question

Which LTL formula expresses "the light is infinitely often red."

æ

Question

Which LTL formula expresses "the light is infinitely often red."

Answer The LTL formula Cored

Question

What does the LTL formula \Box (green $\Rightarrow \neg \bigcirc$ red) express?

2

ヘロト 人間 とくほとくほとう

Question

What does the LTL formula \Box (green $\Rightarrow \neg \bigcirc$ red) express?

Answer

"Once green, the light cannot become red immediately"

э

Definition

Paths(s) is the set of path starting in state *s*.

Question What is *Paths*(2)?

ww.eecs.yorku.ca/course/4315/ EECS 4315

æ

・ロト ・ 同ト ・ ヨト ・ ヨト

Definition

Paths(s) is the set of path starting in state s.

Question

What is Paths(2)?

Answer

{**231231231231**...}

Definition

Let $p \in Paths(s)$ and $n \ge 0$. Then p[n] is the (n + 1)th state of the path p.

Question

Let $p = 123123 \cdots$. What is p[3]?

э

★ E ► ★ E ►

Definition

Let $p \in Paths(s)$ and $n \ge 0$. Then p[n] is the (n + 1)th state of the path p.

Question

Let $p = 123123 \cdots$. What is p[3]?

Definition

Let $p \in Paths(s)$ and $n \ge 0$. Then p[n..] is the suffix of p starting with the (n + 1)th state.

Question

Let $p = 123123 \cdots$. What is p[2..]?

э

프 에 에 프 에 다

Definition

Let $p \in Paths(s)$ and $n \ge 0$. Then p[n..] is the suffix of p starting with the (n + 1)th state.

Question

Let $p = 123123 \cdots$. What is p[2..]?

Answer

312312 · · ·

$p \models f$ denotes that path p satisfies LTL formula f

ペロシィクシィミン き
www.eecs.yorku.ca/course/4315/
EECS 4315

26/32

 $p \models f$ denotes that path p satisfies LTL formula f

æ

 $p \models f$ denotes that path p satisfies LTL formula f

Question
123123 · · · ⊨ green?

Answer

No.

www.eecs.yorku.ca/course/4315/ EECS 4315

æ

ヘロト 人間 ト 人臣 ト 人臣 ト

 $p \models f$ denotes that path p satisfies LTL formula f

2

 $p \models f$ denotes that path p satisfies LTL formula f

Answer

Yes.

www.eecs.yorku.ca/course/4315/ EECS 4315

æ

 $p \models f$ denotes that path p satisfies LTL formula f

2

 $p \models f$ denotes that path p satisfies LTL formula f

Question	
123123 · · · \models red $\land \bigcirc$ green?	J

Answer

Yes.

www.eecs.yorku.ca/course/4315/ EECS 4315

æ

ヘロト 人間 とくほ とくほとう

 $p \models f$ denotes that path p satisfies LTL formula f

2

 $p \models f$ denotes that path p satisfies LTL formula f

Question	
123123 · · · ⊨ ¬green?	

Answer

Yes.

www.eecs.yorku.ca/course/4315/ EECS 4315

æ

ヘロト 人間 とくほ とくほとう

 $p \models f$ denotes that path p satisfies LTL formula f

æ

 $p \models f$ denotes that path p satisfies LTL formula f

Question	
123123 · · · ⊨ red U green?	

Answer

Yes.

www.eecs.yorku.ca/course/4315/ EECS 4315

æ

ヘロト 人間 ト 人臣 ト 人臣 ト

Definition

$$p \models a \quad \text{iff} \quad a \in \ell(p[0])$$

$$p \models f \land \psi \quad \text{iff} \quad p \models f \land p \models \psi$$

$$p \models \neg f \quad \text{iff} \quad p \not\models f$$

$$p \models \bigcirc f \quad \text{iff} \quad p[1..] \models f$$

$$p \models f \cup \psi \quad \text{iff} \quad \exists i \ge 0 : p[i..] \models \psi \land \forall 0 \le j < i : p[j..] \models f$$

◆□ > ◆□ > ◆豆 > ◆豆 > □ 豆

$$TS \models f \text{ iff } \forall s \in I : s \models f$$

where

$$s \models f \text{ iff } \forall p \in Paths(s) : p \models f$$

where

$$p \models a \quad \text{iff} \quad a \in L(p[0])$$

$$p \models f \land \psi \quad \text{iff} \quad p \models f \land p \models \psi$$

$$p \models \neg f \quad \text{iff} \quad p \not\models f$$

$$p \models \bigcirc f \quad \text{iff} \quad p[1..] \models f$$

$$p \models f \cup \psi \quad \text{iff} \quad \exists i \ge 0 : p[i..] \models \psi \land \forall 0 \le j < i : p[j..] \models f$$

æ