# Linear Temporal Logic EECS 4315

www.eecs.yorku.ca/course/4315/

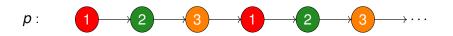
# Linear Temporal Logic

#### Definition

LTL is defined by the following grammar.

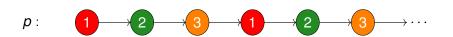
$$f ::= a \mid f \land f \mid \neg f \mid \bigcirc f \mid f \cup f$$

where a is an atomic proposition.



## Question

 $p \models \text{red}$ ?

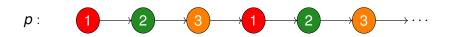


## Question

 $p \models \text{red}$ ?

### Answer

Yes.



## Question

 $p \models \bigcirc \bigcirc \text{red}$ ?



# Question

 $p \models \bigcirc \bigcirc \text{red}$ ?

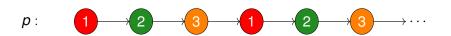
## Answer

No.



## Question

 $p \models \text{red } U \text{ green?}$ 

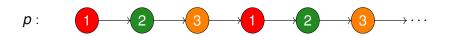


## Question

 $p \models \text{red U green?}$ 

#### **Answer**

Yes.



## Question

 $p \models \Diamond green?$ 

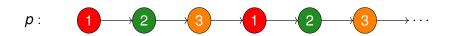


## Question

 $p \models \Diamond green?$ 

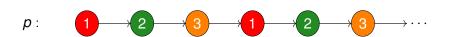
#### **Answer**

Yes.



## Question

$$p \models \Box \neg red?$$

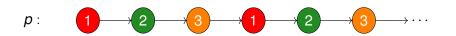


## Question

 $p \models \Box \neg red?$ 

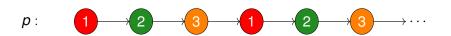
### Answer

No.



## Question

 $p \models (\lozenge \text{green}) \cup (\bigcirc \text{red})?$ 



## Question

 $p \models (\lozenge \text{green}) \cup (\bigcirc \text{red})$ ?

#### **Answer**

Yes.

$$TS \models f \text{ iff } \forall s \in I : s \models f$$

where

$$s \models f \text{ iff } \forall p \in Paths(s) : p \models f$$

where

$$\begin{array}{cccc} p \models a & \mathrm{iff} & a \in L(p[0]) \\ p \models f_1 \wedge f_2 & \mathrm{iff} & p \models f_1 \wedge p \models f_2 \\ p \models \neg f & \mathrm{iff} & p \not\models f \\ p \models \bigcirc f & \mathrm{iff} & p[1..] \models f \\ p \models f_1 \cup f_2 & \mathrm{iff} & \exists i \geq 0 : p[i..] \models f_2 \wedge \forall 0 \leq j < i : p[j..] \models f_1 \end{array}$$

### Question

When  $p \models \Diamond f$ ?

### Question

When  $p \models \Diamond f$ ?

### Answer

 $\exists j \geq 0 : p[j..] \models f.$ 

### Question

When  $p \models \Box f$ ?

### Question

When  $p \models \Box f$ ?

### Answer

$$\forall j \geq 0 : p[j..] \models f.$$

# Equivalence

#### Definition

The LTL formulas f and g are equivalent, denoted  $f \equiv g$ , if for all transition systems TS,

$$TS \models f \text{ iff } TS \models g.$$

# Equivalence

### **Definition**

The LTL formulas f and g are equivalent, denoted  $f \equiv g$ , if for all transition systems TS,

$$TS \models f \text{ iff } TS \models g.$$

#### Exercise

Are the following formulas equivalent? Either provide a proof or a counter example.

(a) 
$$\Diamond (f \wedge g) \equiv \Diamond f \wedge \Diamond g$$
?

(b) 
$$\Diamond \bigcirc f \equiv \bigcirc \Diamond f$$
?



## Invariants

### Definition

The class of LTL formulas that capture *invariants* is defined by  $\Box g$ , where

$$g ::= a \mid g \wedge g \mid \neg g$$
.

## Invariants

### Definition

The class of LTL formulas that capture *invariants* is defined by  $\Box g$ , where

$$g ::= a \mid g \wedge g \mid \neg g$$
.

## Example

 $\Box \neg red.$ 

# Safety properties

Safety properties are characterized by "nothing bad ever happens." For example, "a red light is immediately preceded by orange" is a safety property.

# Safety properties

Safety properties are characterized by "nothing bad ever happens." For example, "a red light is immediately preceded by orange" is a safety property.

#### Question

How can we express this property in LTL?

# Safety properties

Safety properties are characterized by "nothing bad ever happens." For example, "a red light is immediately preceded by orange" is a safety property.

#### Question

How can we express this property in LTL?

#### Answer

 $\Box$ ( $\bigcirc$ red  $\Rightarrow$  orange).

# Liveness properties

Liveness properties are characterized by "something good eventually happens." For example, "the light is infinitely often red" is a liveness property.

# Liveness properties

Liveness properties are characterized by "something good eventually happens." For example, "the light is infinitely often red" is a liveness property.

#### Question

How can we express this property in LTL?

# Liveness properties

Liveness properties are characterized by "something good eventually happens." For example, "the light is infinitely often red" is a liveness property.

#### Question

How can we express this property in LTL?

#### Answer

□◊red.

## Expressiveness of LTL

### Question

Are there properties we cannot express in LTL?

# Expressiveness of LTL

#### Question

Are there properties we cannot express in LTL?

#### Answer

Yes, for example, "Always a state satisfying a can be reached"

## Expressiveness of LTL

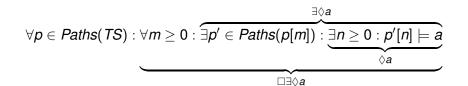
#### Theorem

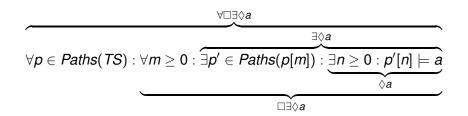
There does not exists an LTL formula  $\varphi$  with  $TS \models \varphi$  iff

 $\forall p \in Paths(TS) : \forall m \geq 0 : \exists p' \in Paths(p[m]) : \exists n \geq 0 : p'[n] \models a.$ 

$$\forall p \in Paths(TS) : \forall m \geq 0 : \exists p' \in Paths(p[m]) : \underbrace{\exists n \geq 0 : p'[n] \models a}$$

$$\forall p \in Paths(TS) : \forall m \geq 0 : \overbrace{\exists p' \in Paths(p[m]) : \underbrace{\exists n \geq 0 : p'[n] \models a}_{\Diamond a}}$$





$$\overbrace{\exists p' \in \textit{Paths}(p[m]) : \underbrace{\exists n \geq 0 : p'[n] \models a}_{\Diamond a}}^{\exists \Diamond a}$$

Recall that  $p \models \Diamond a$  expresses that path p satisfies formula  $\Diamond a$ .

#### Question

?  $\models$  ∃ $\Diamond$ a.

$$\overbrace{\exists p' \in \textit{Paths}(p[m]) : \underbrace{\exists n \geq 0 : p'[n] \models a}_{\Diamond a}}^{\exists \Diamond a}$$

Recall that  $p \models \Diamond a$  expresses that path p satisfies formula  $\Diamond a$ .

#### Question

? |= ∃◊*a*.

#### Answer

There exists a path p starting in state s such that  $p \models \Diamond a$ , hence,  $s \models \exists \Diamond a$ .

$$\overbrace{\exists p' \in \textit{Paths}(p[m]) : \underbrace{\exists n \geq 0 : p'[n] \models a}_{\Diamond a}}^{\exists \Diamond a}$$

Recall that  $p \models \Diamond a$  expresses that path p satisfies formula  $\Diamond a$ .

#### Question

? |= ∃◊*a*.

#### Answer

There exists a path p starting in state s such that  $p \models \Diamond a$ , hence,  $s \models \exists \Diamond a$ .

### Consequence

We should distinguish between *path formulas* and *state formulas*.

# Syntax

The state formulas are defined by

$$f ::= a \mid f \wedge f \mid \neg f \mid \exists g \mid \forall g$$

The path formulas are defined by

$$g ::= \bigcirc f \mid f \cup f$$

# Computation Tree Logic

Computation tree logic (CTL)

Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization skeletons using branching time temporal logic. In, Dexter Kozen, editor, *Proceedings of Workshop on Logic of Programs*, volume 131 of *Lecture Notes in Computer Science*, pages 52–71. Yorktown Heights, NY, USA, May 1981. Springer-Verlag.

Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concurrent systems in CESAR. In, Mariangiola Dezani-Ciancaglini and Ugo Montanari, editors, *Proceedings of the 5th International Symposium on Programming*, volume 137 of *Lecture Notes in Computer Science*, pages 337–351. Torino, Italy, April 1982. Springer-Verlag.

# Syntax

The state formulas are defined by

$$f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$$