Computation Tree Logic EECS 4315

www.eecs.yorku.ca/course/4315/

Computation Tree Logic

The state formulas are defined by

$$f ::= a \mid f \wedge f \mid \neg f \mid \exists g \mid \forall g$$

The path formulas are defined by

$$g ::= \bigcirc f \mid f \cup f$$

Syntactic sugar

```
\exists \lozenge f = \exists (\text{true U } f)
\forall \lozenge f = \forall (\text{true U } f)
\exists \Box f = \neg \forall (\text{true U } \neg f)
\forall \Box f = \neg \exists (\text{true U } \neg f)
```

Question

How to express "Each red light is preceded by a green light" in CTL?

Question

How to express "Each red light is preceded by a green light" in CTL?

Answer

 $\neg \text{red} \land \forall \Box (\text{green} \lor \forall \bigcirc \neg \text{red})$

Question

How to express "The light is infinitely often green" in CTL?

Question

How to express "The light is infinitely often green" in CTL?

Answer

∀□∀⊘green

$$egin{aligned} s &\models a & ext{iff} & a \in \ell(s) \ s &\models f_1 \land f_2 & ext{iff} & s &\models f_1 ext{ and } s &\models f_2 \ s &\models \neg f & ext{iff} & ext{not}(s &\models f) \ s &\models \exists g & ext{iff} & \exists p \in \textit{Paths}(s) : p &\models g \ s &\models \forall g & ext{iff} & \forall p \in \textit{Paths}(s) : p &\models g \end{aligned}$$

and

$$p \models \bigcirc f$$
 iff $p[1] \models f$
 $p \models f_1 \cup f_2$ iff $\exists i \ge 0 : p[i] \models f_2$ and $\forall 0 \le i < i : p[j] \models f_1$

$$TS \models f \text{ iff } \forall s \in I : s \models f.$$

The satisfaction set Sat(f) is defined by

$$Sat(f) = \{ s \in S \mid s \models f \}.$$

Question

Recall that

$$\exists \Diamond f = \exists (\text{true U } f).$$

How is

$$s \models \exists \Diamond f$$

defined?

Question

Recall that

$$\exists \Diamond f = \exists (\text{true U } f).$$

How is

$$s \models \exists \Diamond f$$

defined?

Answer

$$\exists p \in Paths(s) : \exists i \geq 0 : p[i] \models f.$$

Question

Recall that

$$\forall \Diamond f = \forall (\text{true U } f)$$

How is

$$s \models \forall \Diamond f$$

defined?

Question

Recall that

$$\forall \Diamond f = \forall (\text{true U } f)$$

How is

$$s \models \forall \Diamond f$$

defined?

Answer

$$\forall p \in Paths(s) : \exists i \geq 0 : p[i] \models f.$$

Question

Recall that

$$\exists \Box f = \neg \forall (\mathsf{true} \ \mathsf{U} \ \neg f)$$

How is

$$s \models \exists \Box f$$

defined?

Question

Recall that

$$\exists \Box f = \neg \forall (\mathsf{true} \ \mathsf{U} \ \neg f)$$

How is

$$s \models \exists \Box f$$

defined?

Answer

$$\exists p \in Paths(s) : \forall i \geq 0 : p[i] \models f.$$

Question

Recall that

$$\forall \Box f = \neg \exists (\mathsf{true} \ \mathsf{U} \ \neg f)$$

How is

$$s \models \forall \Box f$$

defined?

Question

Recall that

$$\forall \Box f = \neg \exists (\text{true U } \neg f)$$

How is

$$s \models \forall \Box f$$

defined?

Answer

$$\forall p \in Paths(s) : \forall i \geq 0 : p[i] \models f.$$

Expressiveness of LTL and CTL

Theorem

The property

 $\forall p \in \textit{Paths}(\textit{TS}) : \forall m \geq 0 : \exists p' \in \textit{Paths}(p[m]) : \exists n \geq 0 : p'[n] \models a$

cannot be captured by LTL, but is captured by the CTL formula $\forall \Box \exists \Diamond a$.

Expressiveness of LTL and CTL

Theorem

The property

$$\forall p \in Paths(TS) : \exists i \geq 0 : \forall j \geq i : p[j..] \models a$$

cannot be captured by CTL, but is captured by the LTL formula $\Diamond \Box a$.

Basic idea

Compute Sat(f) by recursion on the structure of f.

 $TS \models f \text{ iff } I \subseteq Sat(f).$

Alternative view

Label each state with the subformulas of f that it satisfies.

Definition

The formulas are defined by

$$f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$$

Question

What is Sat(a)?

Definition

The formulas are defined by

$$f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$$

Question

What is Sat(a)?

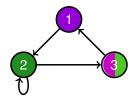
Answer

$$Sat(a) = \{ s \in S \mid a \in \ell(s) \}$$

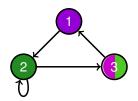
Alternative view

Label each state s satisfying $a \in \ell(s)$ with a.

green



green



Definition

The formulas are defined by

$$f ::= a \mid f \wedge f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$$

Question

What is $Sat(f_1 \wedge f_2)$?

Definition

The formulas are defined by

$$f ::= a \mid f \wedge f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$$

Question

What is $Sat(f_1 \wedge f_2)$?

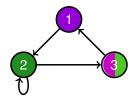
Answer

$$Sat(f_1 \wedge f_2) = Sat(f_1) \cap Sat(f_2)$$

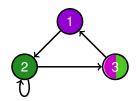
Alternative view

Label states, that are labelled with both f_1 and f_2 , also with $f_1 \wedge f_2$.

green ∧ purple



green ∧ purple



```
\begin{array}{lll} \mathbf{1} & \mapsto & \{\text{purple}\} \\ \mathbf{2} & \mapsto & \{\text{green}\} \\ \mathbf{3} & \mapsto & \{\text{green}, \text{purple}, \text{green} \land \text{purple}\} \end{array}
```

Definition

The formulas are defined by

$$f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$$

Question

What is $Sat(\neg f)$?

Definition

The formulas are defined by

$$f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$$

Question

What is $Sat(\neg f)$?

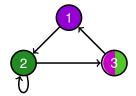
Answer

 $Sat(\neg f) = S \setminus Sat(f)$

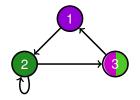
Alternative view

Label each state, that is not labelled with f, with $\neg f$.

 \neg (green \land purple)



\neg (green \land purple)



```
    1 → {purple, ¬(green ∧ purple)}
    2 → {green, ¬(green ∧ purple)}
    3 → {green, purple, green ∧ purple}
```

Definition

The formulas are defined by

$$f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$$

Question

What is $Sat(\exists \bigcirc f)$?

Definition

The formulas are defined by

$$f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$$

Question

What is $Sat(\exists \bigcirc f)$?

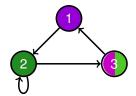
Answer

$$Sat(\exists \bigcirc f) = \{ s \in S \mid Post(s) \cap Sat(f) \neq \emptyset \} \text{ where } Post(s) = \{ s' \in S \mid s \rightarrow s' \}.$$

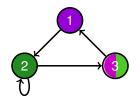
Alternative view

Labels those states, that have a direct successor labelled with f, also with $\exists \bigcirc f$.

 $\exists \bigcirc green$



$\exists \bigcirc green$



Definition

The formulas are defined by

$$f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$$

Question

What is $Sat(\exists (f_1 \cup f_2))$?

```
s \in Sat(\exists (f_1 \cup f_2))
iff s \models \exists (f_1 \cup f_2)
iff s \models f_2 \lor (s \models f_1 \land \exists s \to t : t \models \exists (f_1 \cup f_2))
iff s \in Sat(f_2) \lor (s \in Sat(f_1) \land \exists t \in Post(s) : t \in Sat(\exists (f_1 \cup f_2))
iff s \in Sat(f_2) \cup \{ s \in Sat(f_1) \mid Post(s) \cap Sat(\exists (f_1 \cup f_2)) \neq \emptyset \}
```

```
s \in Sat(\exists (f_1 \cup f_2))
iff s \models \exists (f_1 \cup f_2)
iff s \models f_2 \lor (s \models f_1 \land \exists s \to t : t \models \exists (f_1 \cup f_2))
iff s \in Sat(f_2) \lor (s \in Sat(f_1) \land \exists t \in Post(s) : t \in Sat(\exists (f_1 \cup f_2))
iff s \in Sat(f_2) \cup \{s \in Sat(f_1) \mid Post(s) \cap Sat(\exists (f_1 \cup f_2)) \neq \emptyset\}
```

Proposition

 $Sat(\exists (f_1 \cup f_2))$ is the smallest subset T of S such that

$$T = Sat(f_2) \cup \{ s \in Sat(f_1) \mid Post(s) \cap T \neq \emptyset \}.$$

```
s \in Sat(\exists (f_1 \cup f_2))
iff s \models \exists (f_1 \cup f_2)
iff s \models f_2 \lor (s \models f_1 \land \exists s \to t : t \models \exists (f_1 \cup f_2))
iff s \in Sat(f_2) \lor (s \in Sat(f_1) \land \exists t \in Post(s) : t \in Sat(\exists (f_1 \cup f_2))
iff s \in Sat(f_2) \cup \{ s \in Sat(f_1) \mid Post(s) \cap Sat(\exists (f_1 \cup f_2)) \neq \emptyset \}
```

Proposition

 $Sat(\exists (f_1 \cup f_2))$ is the smallest subset T of S such that

$$T = Sat(f_2) \cup \{ s \in Sat(f_1) \mid Post(s) \cap T \neq \emptyset \}.$$

Question

Does such a smallest subset exist?

Definition

The function $F: 2^S \to 2^S$ is defined by

$$F(T) = Sat(f_2) \cup \{ s \in Sat(f_1) \mid Post(s) \cap T \neq \emptyset \}.$$

Definition

A function $G: 2^S \to 2^S$ is monotone if for all $T, U \in 2^S$, if $T \subseteq U$ then $G(T) \subseteq G(U)$.

Proposition

F is monotone.

Proof

Let T, $U \in 2^S$. Assume that $T \subseteq U$. Let $s \in F(T)$. It remains to prove that $s \in F(U)$. Then $s \in Sat(f_2)$ or $s \in Sat(f_1)$ and $Post(s) \cap T \neq \emptyset$. We distinguish two cases.

- If $s \in Sat(f_2)$ then $s \in F(U)$.
- If $s \in Sat(f_1)$ and $Post(s) \cap T \neq \emptyset$ then $Post(s) \cap U \neq \emptyset$ since $T \subseteq U$. Hence, $s \in F(U)$.

Definition

For each $n \in \mathbb{N}$, the set F_n is defined by

$$F_n = \begin{cases} \emptyset & \text{if } n = 0 \\ F(F_{n-1}) & \text{otherwise} \end{cases}$$

Proposition

For all $n \in \mathbb{N}$, $F_n \subseteq F_{n+1}$.

Proof

We prove this by induction on n. In the base case, n = 0, we have that

$$F_0 = \emptyset \subseteq F_1$$
.

In the inductive case, we have n > 1. By induction, $F_{n-1} \subseteq F_n$. Since F is monotone, we have that

$$F_n = F(F_{n-1}) \subseteq F(F_n) = F_{n+1}$$
.

Proposition

If *S* is a finite set. then $F_n = F_{n+1}$ for some $n \in \mathbb{N}$.

Proof

Suppose that S contains m elements. Towards a contradiction, assume that $F_n \neq F_{n+1}$ for all $n \in \mathbb{N}$. Then $F_n \subset F_{n+1}$ for all $n \in \mathbb{N}$. Hence, F_n contains at least n elements. Therefore, F_{m+1} contains more elements than S. This contradicts that $F_{m+1} \subseteq S$.

We denote the F_n with $F_n = F_{n+1}$ by fix(F).

Proposition

For all $T \subseteq S$, if F(T) = T then $fix(F) \subseteq T$.

Proof

First, we prove that for all $n \in \mathbb{N}$, $F_n \subseteq T$ by induction on n. In the base case, n = 0, we have that

$$F_0 = \emptyset \subseteq T$$
.

In the inductive case, we have n > 1. By induction, $F_{n-1} \subseteq T$. By induction

$$F_n = F(F_{n-1}) \subseteq F(T) = T$$
.

Since $fix(F) = F_n$ for some $n \in \mathbb{N}$, we can conclude that $fix(F) \subseteq T$.

Corollary

fix(F) is the smallest T of S such that F(T) = T.