
Theorem Proving versus Model Checking
EECS 4315

www.eecs.yorku.ca/course/4315/

www.eecs.yorku.ca/course/4315/ EECS 4315 1 / 10

www.eecs.yorku.ca/course/4315/
www.eecs.yorku.ca/course/4315/


Comparison

In theorem proving, programs are typically verified
method-by-method. Given a method and its contract, a theorem
prover transforms the precondition while symbolically executing
the method. Then, it checks whether the transformed
precondition is a model of the postcondition (i.e., it implies the
postcondition).

In model checking, programs are usually verified by means of
test scenarios. A model checker takes the program and test
scenarios as input and exhaustively searches for possible
violations. The difference of test scenarios compared to test
cases is that they can include arbitrary values (e.g., a boolean
value or a positive integer), which are all considered during
model checking.

www.eecs.yorku.ca/course/4315/ EECS 4315 2 / 10

www.eecs.yorku.ca/course/4315/


Comparison

"In model-checking, you describe an abstracted version of your
system and you can automatically check some properties. Your
model has to be small enough (in term of number of states) to
be processed by the tool, and the class of formulas you can
express may be limited. Typically, you can check safety
properties (such as assert statement in your code).

On the other hand, using a theorem prover (I think "proof
assistant" is a better term), you can work on more accurate
representations of your system and express any properties, but
most proofs have to be done manually which requires time and
expertise."

www.eecs.yorku.ca/course/4315/ EECS 4315 3 / 10

www.eecs.yorku.ca/course/4315/


Comparison

"In model-checking, you describe an abstracted version of your
system and you can automatically check some properties. Your
model has to be small enough (in term of number of states) to
be processed by the tool, and the class of formulas you can
express may be limited. Typically, you can check safety
properties (such as assert statement in your code).

On the other hand, using a theorem prover (I think "proof
assistant" is a better term), you can work on more accurate
representations of your system and express any properties, but
most proofs have to be done manually which requires time and
expertise."

www.eecs.yorku.ca/course/4315/ EECS 4315 4 / 10

www.eecs.yorku.ca/course/4315/


Comparison

Model checking and theorem proving go about different ways to
answer the question.

Model checking, roughly, tries to use brute force to answer the
question and requires no human interaction in doing so. You
could imagine it feeding every possible input to every process,
choosing every possible interleaving of messages and, for
every state reachable in such a manner, checking whether the
bad thing happens.

In theorem proving, you try to provide the rationale of why
things can’t go wrong in form of theorems. However, you also
have to convince the theorem prover that your reasoning is
sound. So first you need to understand what methods of
reasoning you are using precisely, and you also need to
somewhat understand the way of how the prover "ticks" and
what kinds of reasoning steps it can perform automatically.

www.eecs.yorku.ca/course/4315/ EECS 4315 5 / 10

www.eecs.yorku.ca/course/4315/


Comparison

Model checking and theorem proving go about different ways to
answer the question.

Model checking, roughly, tries to use brute force to answer the
question and requires no human interaction in doing so. You
could imagine it feeding every possible input to every process,
choosing every possible interleaving of messages and, for
every state reachable in such a manner, checking whether the
bad thing happens.

In theorem proving, you try to provide the rationale of why
things can’t go wrong in form of theorems. However, you also
have to convince the theorem prover that your reasoning is
sound. So first you need to understand what methods of
reasoning you are using precisely, and you also need to
somewhat understand the way of how the prover "ticks" and
what kinds of reasoning steps it can perform automatically.

www.eecs.yorku.ca/course/4315/ EECS 4315 6 / 10

www.eecs.yorku.ca/course/4315/


Model Checking

Advantages
Automatic.

Limitations
Can only handle "small" models (and models may become
huge due to the state space explosion problem).
Can only check properties expressed in "simple" logics
such as LTL and CTL.

www.eecs.yorku.ca/course/4315/ EECS 4315 7 / 10

www.eecs.yorku.ca/course/4315/


Theorem Proving

Advantages
Can handle code of arbitrary size.
Can check any property.

Limitations

Labour intensive.
Can only be used by experts.

www.eecs.yorku.ca/course/4315/ EECS 4315 8 / 10

www.eecs.yorku.ca/course/4315/


Finding Bugs . . .

. . . is still a challenge. Being familiar with
testing,
theorem proving and
model checking

is essential for tomorrow’s software engineer.

www.eecs.yorku.ca/course/4315/ EECS 4315 9 / 10

www.eecs.yorku.ca/course/4315/


Final Exam

When: Thursday April 13, 9:00-11:00

Where: Accolade East, room 006

What: all the material covered in the course with emphasis on
the material that has not yet been tested in quizzes (the
textbook contains useful exercises).

Note: you may bring one letter sized piece of paper with notes
on a single side; relevant definitions will be provided in the
exam.

www.eecs.yorku.ca/course/4315/ EECS 4315 10 / 10

www.eecs.yorku.ca/course/4315/

