Mini Models EECS 4315

www.cse.yorku.ca/course/4315/

www.cse.yorku.ca/course/4315/ EECS 4315

æ

イロト 不得 とくほと くほとう

æ

Mini Model

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

A labelled transition system is a tuple $\langle {\it S}, {\it A},
ightarrow, {\it s}
angle$ consisting of

- a set S of states,
- a set A of actions,
- a transition relation $\rightarrow \subseteq S \times A \times S$, and
- a start state $s \in S$.

< 프 → - 프

Model

▲ロト ▲御 と ▲注 と ▲注 と 一注

Mini Model

æ

(七日)) (七日))

From Model to Mini Model: Actions

Question

If the actions of the model are elements of the set *A*, then the actions of the mini model are elements of the set ...

From Model to Mini Model: Actions

Question

If the actions of the model are elements of the set *A*, then the actions of the mini model are elements of the set ...

Answer

 A^+ : the set of nonempty finite sequences over A.

From Model to Mini Model: Actions

Question

If the actions of the model are elements of the set *A*, then the actions of the mini model are elements of the set ...

Answer

 A^+ : the set of nonempty finite sequences over A.

ab, *bca* and *aca* are nonempty finite sequences over $\{a, b, c\}$.

Labelled Transition Systems: successors

Definition

The set succ(s) of successors of the state s is defined by

$${\it succ}({\it s}) = \{ \, t \in {\it S} \mid \exists {\it a} \in {\it A} : {\it s} \stackrel{{\it a}}{\longrightarrow} t \, \}.$$

Labelled Transition Systems: successors

$$\begin{array}{rcl} succ(1) &=& \{2\}\\ succ(2) &=& \{3\}\\ succ(3) &=& \{4,5\}\\ succ(4) &=& \{6\}\\ succ(5) &=& \{6\}\\ succ(6) &=& \{7\}\\ succ(7) &=& \emptyset \end{array}$$

www.cse.yorku.ca/course/4315/ EECS 4315

э

코어 세 코어 -

Labelled Transition Systems: predecessors

Definition

The set pred(s) of predecessors of the state s is defined by

$$\mathsf{pred}(s) = \{ t \in S \mid \exists a \in \mathsf{A} : t \xrightarrow{a} s \}.$$

Labelled Transition Systems: predecessors

$$\begin{array}{rcl} pred(1) &=& \emptyset\\ pred(2) &=& \{1\}\\ pred(3) &=& \{2\}\\ pred(4) &=& \{3\}\\ pred(5) &=& \{3\}\\ pred(6) &=& \{4,5\}\\ pred(7) &=& \{6\} \end{array}$$

э

▶ ★ 臣 ▶ ...

From Model to Mini Model: Transitions

Definition

The relation $- \rightarrow \subseteq S \times A^+ \times S$ is the smallest relation such that

if there exists a sequence of transitions s₀ → s₁ → s₁ → s_n s_n such that s₁,..., s_{n-1} each have one successor and s₀ and s_n do not, then s₀ → s_n;
if there exists a sequence of transitions s₀ → s₁ → s_n s_n such that s₁,..., s_{n-1} each have

イロト 不得 とくき とくきとうき

Definition (continued)

 if there exists a sequence of transitions $S_0 \xrightarrow{a_1} S_1 \xrightarrow{a_2} \cdots \xrightarrow{a_m} S_m \xrightarrow{a_{m+1}} \cdots \xrightarrow{a_n} S_n$ such that s_1, \ldots, s_n each have one successor and s_0 does not and $s_1, \ldots s_{n-1}$ are all different and $s_m = s_n$, then $s_0 \xrightarrow{a_1 \cdots a_m} s_m$ and $s_m \xrightarrow{a_{m+1} \cdots a_n} s_m$: if there exists a sequence of transitions $S_0 \xrightarrow{a_1} S_1 \xrightarrow{a_2} \cdots \xrightarrow{a_m} S_m \xrightarrow{a_{m+1}} \cdots \xrightarrow{a_n} S_n$ such that s_1, \ldots, s_n each have one successor and s_0 is the initial state and s_1, \ldots, s_{n-1} are all different and $s_m = s_n$, then $s_0 \xrightarrow{a_1 \cdots a_m} s_m \text{ and } s_m \xrightarrow{a_{m+1} \cdots a_n} s_m.$

イロト 不得 とくき とくきとうき

Question

The set S_+ of states of the mini model is ...

э

▶ < Ξ ▶ ...</p>

Question

The set S_+ of states of the mini model is ...

Answer

the smallest set S_+ such that

- initial state $s \in S_+$ and
- if $s \in S_+$ and $s \xrightarrow{a_1 \dots a_n} t$ then $t \in S_+$.

Question

The set S_+ of states of the mini model is ...

Answer

the smallest set S_+ such that

• initial state $s \in S_+$ and

• if
$$s \in S_+$$
 and $s \stackrel{a_1 \dots a_n}{\longrightarrow} t$ then $t \in S_+$.

Question

Does such a smallest set exist?

ヨントー

Question

The set S_+ of states of the mini model is ...

Answer

the smallest set S_+ such that

• initial state $s \in S_+$ and

• if
$$s \in S_+$$
 and $s \stackrel{a_1 \dots a_n}{\longrightarrow} t$ then $t \in S_+$.

Question

Does such a smallest set exist?

Question

Yes. We will discuss the details later in the course.

The set S_+ of states of the mini model can be computed as follows.

 $egin{aligned} S_+ &= \emptyset \ \mathbf{do} \ T &= S_+ \ \mathbf{for \ each} \ s \in T \ \mathbf{for \ each} \ t \in S \ \mathbf{if} \ s \stackrel{a_1 \dots a_n}{=} t \ \mathbf{for \ some} \ a_1 \dots a_n \in A \ S_+ &= S_+ \cup \{t\} \end{aligned}$ while $S_+ &\neq T$

・ロト ・ 同ト ・ ヨト ・ ヨト

```
Random random = new Random();
if (random.nextBoolean())
  System.out.println("1");
else
  System.out.println("2");
System.out.println("done");
```

э

* E > * E >

target=OneChoice classpath=. cg.enumerate_random=true listener=gov.nasa.jpf.listener.StateSpaceDot

イロト イポト イヨト イヨト

One Choice

jpf -show OneChoice1.jpf produced the following output.

```
----- Config contents
branch_start = 1
cg.boolean.false_first = true
cg.break_single_choice = false
cg.enable_atomic = true
cg.enumerate_random = true
...
vm.max_transition_length = 50000
...
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ の々で

target=OneChoice classpath=. cg.enumerate_random=true vm.max_transition_length=1 listener=gov.nasa.jpf.listener.StateSpaceDot

イロト イポト イヨト イヨト

One Choice

Two Choices

```
Random random = new Random();
if (random.nextBoolean())
  if (random.nextBoolean())
    System.out.println("1");
  else
    System.out.println("2");
else
  if (random.nextBoolean())
    System.out.println("3");
  else
    System.out.println("4");
System.out.println("done");
```

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

▲ロト ▲御 と ▲注 と ▲注 と 一注

Two Choices

www.cse.yorku.ca/course/4315/ EECS 4315