
Micriµm, Inc.
© Copyright 2001, Micriµm, Inc.

All Rights reserved

µC/OS-II

and
Event Flags

Application Note
AN-1007A

Jean J. Labrosse
Jean.Labrosse@Micrium.com

www.Micrium.com

mailto:Jean.Labrosse@Micrium.com
http://www.micrium.com/

 µC/OS-II and Event Flags

Summary
Event flags are used when a task needs to synchronize with the occurrence of multiple events. The task
can be synchronized when any of the events have occurred. This is called disjunctive synchronization
(logical OR). A task can also be synchronized when all events have occurred. This is called conjunctive
synchronization (logical AND). Disjunctive and conjunctive synchronization are shown in Figure 1.

This application note describes the Event Flag series of services which were added to µC/OS-II V2.05.

Figure 1, Disjunctive and Conjunctive Synchronization using Event Flags.

Introduction
Common events can be used to signal multiple tasks, as shown in Figure 2. Events are typically
grouped. Depending on the kernel, a group consists of 8, 16 or 32 events. µC/OS-II allows you to
choose the number of bits in an event flag group at compile time. Tasks and ISRs can set or clear any
event in a group. A task is resumed when all the events (i.e. bits in the event group) it requires are
satisfied. The evaluation of which task will be resumed is performed when a new set of events occurs
(i.e. during a POST operation).

µC/OS-II offer services to SET event flags, CLEAR event flags, and WAIT (or PEND) for event flags
(conjunctively or disjunctively) to be either set or cleared. A task that waits for events to be SET can also
clear those events once received. Similarly, a task that waits for events to be CLEARED can also set
those events once received.

AN1007 - 2

µC/OS-II and Event Flags

Figure 2, Signaling events to tasks.

Figure 3 shows the relationship between Tasks and ISRs and which services are provided by µC/OS-II.
As you can see you can only create or delete from either task level code or startup code (i.e. code
executed before starting µC/OS-II).

Figure 3, µC/OS-II Event Flag services.

 AN1007 - 3

 µC/OS-II and Event Flags

Event Flag Internals
A µC/OS-II's event flag group consist of three elements as shown in the OS_FLAG_GRP structure below.
First, a type which is used to make sure that you are pointing to an event flag group. This field is the first
field of the structure because it allows µC/OS-II services to ‘validate’ the type of structure being pointed
to. For example, if you were to pass a pointer to an event flag group to OSSemPend(), µC/OS-II would
return an error code indicating that you are not passing the proper ‘object’ to the semaphore pend call.
The second field contains a series of flags (i.e. bits) which holds the current status of events. Finally, an
event flag group contains a list of tasks waiting for events.

typedef struct {
 INT8U OSFlagType;
 void *OSFlagWaitList;
 OS_FLAGS OSFlagFlags;
} OS_FLAG_GRP;

Figure 4, Relationship between Event Flag Group, Event Flag Nodes and TCBs.

AN1007 - 4

µC/OS-II and Event Flags

You should note that the wait list for event flags is different than the other wait lists in µC/OS-II. With
event flags, the wait list is accomplished through a doubly linked list as shown in figure 4. Three data
structures are involved. OS_FLAG_GRP (mentioned above), OS_TCB which is the task control block and
OS_FLAG_NODE which is used to keep track of which bits the task is waiting for as well as what type of
wait (AND or OR). As you can see, there are a lot of pointers involved.

An OS_FLAG_NODE is created when a task desires to wait on bits of an event flag group and the node is
‘destroyed’ when the event(s) occur. In other words, a node is created by OSFlagPend() as we will see
shortly. Before we discuss this, let’s look at the OS_FLAG_NODE data structure.

typedef struct {
 void *OSFlagNodeNext;
 void *OSFlagNodePrev;
 void *OSFlagNodeTCB;
 void *OSFlagNodeFlagGrp;
 OS_FLAGS OSFlagNodeFlags;
 INT8U OSFlagNodeWaitType;
} OS_FLAG_NODE;

The OSFlagNodeNext and OSFlagNodePrev are used to maintain a doubly linked list of
OS_FLAG_NODEs. The doubly linked list allows us to easily insert and especially remove nodes from the
wait list.

OSFlagNodeTCB is used to point to the TCB of the task waiting on event flags belonging to the event flag
group. This pointer thus allows us to know which tasks is waiting for the specified flags.

OSFlagNodeFlagGrp allows a link back to the event flag group. This pointer is used when removing the
node from the doubly linked list and is there because a node might need to be removed because a task is
deleted (see OSTaskDel()).

The OSFlagNodeFlags contains the bit-pattern of the flags that the task is waiting for. For example,
your task might have performed an OSFlagPend() and specified that the task wants to wait for bits 0, 4,
6 and 7 (bit 0 is the rightmost bit). In this case, OSFlagFlags would contain 0xD1. Depending on the
size of the data type OS_FLAGS, OSFlagFlags is either 8, 16 or 32 bits. OS_FLAGS is specified in your
application configuration file, i.e OS_CFG.H. Because µC/OS-II and the ports are provided in source
form, you can easily change the number of bits in an event flag group to satisfy your requirements for a
specific application or product. The reason you would limit the number of bits to 8 is to reduce both RAM
and ROM for your application.

The last member of the OS_FLAG_NODE data structure is OSFlagNodeWaitType which determines
whether the task is waiting for ALL (AND wait) the bits in the event flag group that matches
OSFlagNodeFlags or, ANY (OR wait) of the bits in the event flag group that matches
OSFlagNodeFlags. OSFlagNodeWaitType can be set to:

OS_FLAG_WAIT_CLR_ALL
OS_FLAG_WAIT_CLR_AND

OS_FLAG_WAIT_CLR_ANY
OS_FLAG_WAIT_CLR_OR

OS_FLAG_WAIT_SET_ALL
OS_FLAG_WAIT_SET_AND

OS_FLAG_WAIT_SET_ANY
OS_FLAG_WAIT_SET_OR

 AN1007 - 5

 µC/OS-II and Event Flags

You should note that AND and ALL means the same thing and either one can be used. I prefer to use
OS_FLAG_WAIT_???_ALL because it’s more obvious but you are certainly welcomed to use
OS_FLAG_WAIT_???_AND. Similarly, OR or ANY means the same thing and either one can be used.
Again, I prefer to use OS_FLAG_WAIT_???_ANY because it’s more obvious but again, you can use
OS_FLAG_WAIT_???_OR. The other thing to notice is that you can wait for either bits to be SET or
CLEARED.

AN1007 - 6

µC/OS-II and Event Flags

Creating an Event Flag Group, OSFlagCreate()
The code to create an event flag group is shown in listing 1.

OS_FLAG_GRP *OSFlagCreate (OS_FLAGS flags, INT8U *err)
{
#if OS_CRITICAL_METHOD == 3 /* Allocate storage for CPU status register */
 OS_CPU_SR cpu_sr;
#endif
 OS_FLAG_GRP *pgrp;

 if (OSIntNesting > 0) { /* (1) See if called from ISR ... */
 err = OS_ERR_CREATE_ISR; / ... can't CREATE from an ISR */
 return ((OS_FLAG_GRP *)0);
 }
 OS_ENTER_CRITICAL();
 pgrp = OSFlagFreeList; /* (2) Get next free event flag */
 if (pgrp != (OS_FLAG_GRP *)0) { /* (3) See if we have event flag groups available */
 /* (4) Adjust free list */
 OSFlagFreeList = (OS_FLAG_GRP *)OSFlagFreeList->OSFlagWaitList;
 pgrp->OSFlagType = OS_EVENT_TYPE_FLAG; /* (5) Set to event flag group type */
 pgrp->OSFlagFlags = flags; /* (6) Set to desired initial value */
 pgrp->OSFlagWaitList = (void *)0; /* (7) Clear list of tasks waiting on flags */
 OS_EXIT_CRITICAL();
 *err = OS_NO_ERR;
 } else {
 OS_EXIT_CRITICAL();
 *err = OS_FLAG_GRP_DEPLETED;
 }
 return (pgrp); /* (8) Return pointer to event flag group */
}

Listing 1, Creating an Event Flag Group.

OSFlagCreate() starts by making sure it’s not called from an ISR because that’s not allowed L1(1).

OSFlagCreate() then attempts to get a free Event Flag Group (i.e. an OS_FLAG_GRP) from the free list
L1(2). An non-NULL pointer indicates that an event flag group is available L1(3). Once a group is
allocated, the free list pointer is adjusted L1(4). Note that the number of Event Flag Groups that you can
create is determined by the #define constant OS_MAX_FLAGS which is defined in OS_CFG.H in your
application.

OSFlagCreate() then fills in the fields in the event flag group. OS_EVENT_TYPE_FLAG indicates that
this control block is an event flag group. Because this is the first field in the data structure, it’s at offset
zero. In µC/OS-II, the first byte of an event flag group or an event control block used for semaphores,
mailboxes, queues and mutexes indicates the type which allows us to check that we are pointing to the
proper object.

OSFlagCreate() then stores the initial value of the event flags into the event flag group L1(6).
Typically, you would initialize the flags to all 0s but, if you are checking for CLEARED bits then, you could
initialize the flags to all 1s.
Because we are creating the group, there are no tasks waiting on the group and thus, the wait list pointer
is initialized to NULL L1(7).

The pointer to the created event flag group is returned. If there were no more groups available,
OSFlagCreate() would return a NULL pointer L1(8).

 AN1007 - 7

 µC/OS-II and Event Flags

Deleting an Event Flag Group, OSFlagDel()
The code to delete an event flag group is shown in listing 2.

OS_FLAG_GRP *OSFlagDel (OS_FLAG_GRP *pgrp, INT8U opt, INT8U *err)
{
#if OS_CRITICAL_METHOD == 3 /* Allocate storage for CPU status register */
 OS_CPU_SR cpu_sr;
#endif
 BOOLEAN tasks_waiting;
 OS_FLAG_NODE *pnode;

 if (OSIntNesting > 0) { /* (1) See if called from ISR ... */
 err = OS_ERR_DEL_ISR; / ... can't DELETE from an ISR */
 return (pgrp);
 }
#if OS_ARG_CHK_EN > 0
 if (pgrp == (OS_FLAG_GRP *)0) { /* (2) Validate 'pgrp' */
 *err = OS_FLAG_INVALID_PGRP;
 return (pgrp);
 }
 if (pgrp->OSFlagType != OS_EVENT_TYPE_FLAG) { /* (3) Validate event group type */
 *err = OS_ERR_EVENT_TYPE;
 return (pgrp);
 }
#endif
 OS_ENTER_CRITICAL();
 if (pgrp->OSFlagWaitList != (void *)0) { /* (4) See if any tasks waiting on event flags */
 tasks_waiting = TRUE; /* Yes */
 } else {
 tasks_waiting = FALSE; /* No */
 }
 switch (opt) {
 case OS_DEL_NO_PEND: /* (5) Delete group if no task waiting */
 if (tasks_waiting == FALSE) {
 pgrp->OSFlagType = OS_EVENT_TYPE_UNUSED;
 pgrp->OSFlagWaitList = (void *)OSFlagFreeList; /* (6) Return group to free list */
 OSFlagFreeList = pgrp;
 OS_EXIT_CRITICAL();
 *err = OS_NO_ERR;
 return ((OS_FLAG_GRP *)0); /* (7) Event Flag Group has been deleted */
 } else {
 OS_EXIT_CRITICAL();
 *err = OS_ERR_TASK_WAITING;
 return (pgrp);
 }

 case OS_DEL_ALWAYS: /* (8) Always delete the event flag group */
 pnode = pgrp->OSFlagWaitList;
 while (pnode != (OS_FLAG_NODE *)0) { /* (9) Ready ALL tasks waiting for flags */
 OS_FlagTaskRdy(pnode, (OS_FLAGS)0);
 pnode = pnode->OSFlagNodeNext;
 }
 pgrp->OSFlagType = OS_EVENT_TYPE_UNUSED;
 pgrp->OSFlagWaitList = (void *)OSFlagFreeList;/* (10) Return group to free list */
 OSFlagFreeList = pgrp;
 OS_EXIT_CRITICAL();
 if (tasks_waiting == TRUE) { /* (11) Reschedule only if task(s) were waiting */
 OS_Sched(); /* Find highest priority task ready to run */
 }
 *err = OS_NO_ERR;
 return ((OS_FLAG_GRP *)0); /* (12) Event Flag Group has been deleted */

 default:
 OS_EXIT_CRITICAL();
 *err = OS_ERR_INVALID_OPT;
 return (pgrp);
 }
}

Listing 2, Deleting an Event Flag Group.

AN1007 - 8

µC/OS-II and Event Flags

This is a function you should use with caution because multiple tasks could attempt to access a deleted
event flag group. You should always use this function with great care. Generally speaking, before you
would delete an event flag group, you would first delete all the tasks that access the event flag group.

OSFlagDel() starts by making sure that this function is not called from an ISR because that’s not
allowed L2(1).

We then validate the arguments passed to OSFlagDel(). First, we make sure that pgrp is not a NULL
pointer L2(2) and pgrp points to point to an event flag group L2(3). Note that this code is conditionally
compiled and thus, if OS_ARG_CHK_EN is set to 0 then this code is NOT compiled. This is done to allow
you to reduce the amount of ROM needed by this module.

OSFlagDel() then determines whether there are any tasks waiting on the event flag group and sets the
local BOOLEAN tasks_waiting accordingly L2(4).

Based on the option (i.e. opt) passed in the call, OSFlagDel() will either delete the event flag group
only if no tasks are pending on the event flag group (opt == OS_DEL_NO_PEND) or, delete the event
flag group even if tasks are waiting (opt == OS_DEL_ALWAYS).

When opt is set to OS_DEL_NO_PEND and there is no task waiting on the event flag group L2(5),
OSFlagDel() marks the group as unused and the event flag group is returned to the free list of
groups L2(6). This will allow another event flag group to be created. You will note that
OSFlagDel() returns a NULL pointer L2(7) since, at this point, the event flag group should no
longer be accessed through the original pointer.

When opt is set to OS_DEL_ALWAYS L2(8) then all tasks waiting on the event flag group will be
readied L2(9). Each task will think the event(s) it was waiting for occurred. Once all pending
tasks are readied, OSFlagDel() marks the event flag group as unused and the group is
returned to the free list of groups L2(10). The scheduler is called only if there were tasks waiting
on the event flag group L2(11). You will note that OSFlagDel() returns a NULL pointer L2(12)
since, at this point, the event flag group should no longer be accessed through the original
pointer.

 AN1007 - 9

 µC/OS-II and Event Flags

Waiting for event(s) of an Event Flag Group, OSFlagPend()
The code to wait for event(s) of an event flag group is shown in listing 3. This is a long function because
a lot is happening.

Like all µC/OS-II pend calls, OSFlagPend() cannot be called from an ISR and thus, OSFlagPend()
checks for this condition first L3(1).

Assuming that the configuration constant OS_ARG_CHK_EN is set to 1, OSFlagPend() makes sure that
the ‘handle’ pgrp is not a NULL pointer L3(2) and that pgrp points to an event flag group L3(3) that
should have been created by OSFlagCreate().

OSFlagPend() allows you to specify whether you will CLEAR or SET flags once they satisfy the
condition you are waiting for. This is accomplished by ADDing or ORing OS_FLAG_CONSUME to the
wait_type argument during the call to OSFlagPend(). For example, if you want to wait for BIT0 to be
SET in the event flag group and if BIT0 is in fact SET, it will be CLEARED by OSFlagPend() if you ADD
OS_FLAG_CONSUME to the type of wait desired as shown below:

OSFlagPend(OSFlagMyGrp,
 (OS_FLAGS)0x01,
 FLAG_WAIT_SET_ANY + OS_FLAG_CONSUME,
 0,
 &err);

Because the ‘consumption’ of the flag(s) is done later in the code, OSFlagPend() saves the ‘consume’
option in the BOOLEAN variable called consume L3(4).

OSFlagPend() then executes code based on the wait type specified in the function called L3(5). There
are four choices:

1) wait for ALL bits specified to be SET in the event flag group,
2) wait for ANY bit specified to be SET in the event flag group,
3) wait for ALL bits specified to be CLEARED in the event flag group,
4) wait for ANY bit specified to be CLEARED in the event flag group.

The last two choices are identical to the first two choices except that OSFlagPend() ‘looks’ for the bits
specified to be CLEARED (i.e. 0) instead of them being SET (i.e. 1). For this reason, I will only discuss
the first two choices. In fact, in order to conserve ROM, you may not need to look for bits to be cleared
and thus, you can ‘compile-out’ all the corresponding code out by setting OS_FLAG_WAIT_CLR_EN to 0 in
OS_CFG.H.

Wait for ALL of the specified bits to be SET:
When wait_type is set to either OS_FLAG_WAIT_SET_ALL or OS_FLAG_WAIT_SET_AND,
OSFlagPend() will ‘extract’ the desired bits in the event flag group which are specified in the
flags argument L3(6). If all the bits extracted matches the bits that you specified in the flags
argument L3(7) then, the event flags that the task wants are all set and thus, the PEND call would
return to the caller. Before we return, we need to determine whether we need to ‘consume’ the
flags L3(8) and if so, we will CLEAR all the flags that satisfied the condition L3(9). The new value
of the event flag group is obtained L3(10) and returned to the caller L3(11).

AN1007 - 10

µC/OS-II and Event Flags

If ALL the desired bits in the event flag group were not SET then the calling task will block (i.e.
suspend) until ALL the bits are either SET or a timeout occurs L3(12). Instead of repeating
code for all four types of wait, I created a function (OS_FlagBlock()) to handle the details of
blocking the calling task (described soon).

Wait for ANY of the specified bits to be SET:
When wait_type is set to either OS_FLAG_WAIT_SET_ANY or OS_FLAG_WAIT_SET_OR,
OSFlagPend() will ‘extract’ the desired bits in the event flag group which are specified in the
flags argument L3(13). If any of the bits extracted matches the bits that you specified in the
flags argument L3(14) then the PEND call will return to the caller. Before we return, we need to
determine whether we need to ‘consume’ the flag(s) L3(15) and if so, we need to CLEAR all the
flag(s) that satisfied the condition L3(16). The new value of the event flag group is obtained
L3(17) and returned to the caller L3(18).

If NONE of the desired bits in the event flag group were not SET then the calling task will block
(i.e. suspend) until ANY of the bits is either SET or a timeout occurs L3(19).

As mentioned above, if the desired bits and conditions of a PEND call are not satisfied the the calling task
is suspended until either the event or a timeout occurs. The task is suspended by OS_FlagBlock()
(see Listing 4) which adds the calling task to the wait list of the event flag group. The process is shown in
Figure 5.

Figure 5, Adding the current task to the wait list of the Event Flag Group.

 AN1007 - 11

 µC/OS-II and Event Flags

OS_FlagBlock() starts by setting the appropriate fields in the task control block L4-F5(1). You
should note that an OS_FLAG_NODE is allocated on the stack of the calling task (see
OSFlagPend(), L3). This means that we don’t need to keep a separate ‘free list’ of
OS_FLAG_NODE since these data structures can simply be allocated on the stack. That being
said, the calling task must have sufficient stack space to allocate this structure on its stack.

We then link the OS_FLAG_NODE to the TCB, L4-F5(2) but only if OS_TASK_DEL_EN is set to 1.
This allows OSTaskDel() to remove the task being suspended from the wait list should a task
decide to delete this task.

Next, OS_FlagBlock() saves the flags that the task is waiting for as well as the wait type in the
OS_FLAG_NODE structure, L4-F5(3).

We then link the TCB to the OS_FLAG_NODE, L4-F5(4).

The OS_FLAG_NODE is then linked to the other OS_FLAG_NODEs in the wait list, L4-F5(5). You
should note that the OS_FLAG_NODE is simply inserted at the beginning of the doubly-linked list
for simplicity sake, L4-F5(6).

We then link the event flag group to the OS_FLAG_NODE, L4-F5(7). This is again done to allow
us to delete the task that is being added to the wait list of the event flag group.

OS_FlagBlock() then links the previous ‘first’ node in the wait list to the new OS_FLAG_NODE,
L4-F5(8).

Finally, the pointer of the beginning of the wait list is updated to point to the new OS_FLAG_NODE,
L4-F5(9) and, the calling task is made NOT ready-to-run, L4-F5(10).

You should note that interrupts are disabled during the process of blocking the calling task.

We can now resume the discussion of listing 3. When OS_FlagBlock() returns, the scheduler is called
because, of course, the calling task is no longer able to run since the event(s) it was looking for did not
occur, L3(20).

When µC/OS-II resumes the calling task, OSFlagPend() checks HOW the task was readied, L3(21). If
the status field in the TCB still indicate that the task is still waiting for event flags to be either set or
cleared then, the task MUST have been readied because of a timeout. In this case, the OS_FLAG_NODE
is removed from the wait list by calling OS_FlagUnlink(), L3(22) and, an error code is returned to the
caller indicating the outcome of the call. The code for OS_FlagUnlink() is shown in Listing 5 and
should be quite obvious since we are simply removing a node from a doubly linked list.

If the calling task is NOT resumed because of a timeout then, it MUST have been resumed because the
event flags that it was waiting for have been either set or cleared. In this case, we determine whether the
calling task wanted to consume the event flags. If this is the case, the appropriate flags are either set or
cleared based on the wait type, L3(24).

Finally, OSFlagPend() obtains the current value of the event flags in the group in order to return this
information to the caller, L3(25).

AN1007 - 12

µC/OS-II and Event Flags

OS_FLAGS OSFlagPend (OS_FLAG_GRP *pgrp, OS_FLAGS flags, INT8U wait_type, INT16U timeout, INT8U *err)
{
#if OS_CRITICAL_METHOD == 3 /* Allocate storage for CPU status register */
 OS_CPU_SR cpu_sr;
#endif
 OS_FLAG_NODE node;
 OS_FLAGS flags_cur;
 OS_FLAGS flags_rdy;
 BOOLEAN consume;

 if (OSIntNesting > 0) { /* (1) See if called from ISR ... */
 err = OS_ERR_PEND_ISR; / ... can't PEND from an ISR */
 return ((OS_FLAGS)0);
 }
#if OS_ARG_CHK_EN > 0
 if (pgrp == (OS_FLAG_GRP *)0) { /* (2) Validate 'pgrp' */
 *err = OS_FLAG_INVALID_PGRP;
 return ((OS_FLAGS)0);
 }
 if (pgrp->OSFlagType != OS_EVENT_TYPE_FLAG) { /* (3) Validate event block type */
 *err = OS_ERR_EVENT_TYPE;
 return ((OS_FLAGS)0);
 }
#endif
 if (wait_type & OS_FLAG_CONSUME) { /* (4) See if we need to consume the flags */
 wait_type &= ~OS_FLAG_CONSUME;
 consume = TRUE;
 } else {
 consume = FALSE;
 }
 OS_ENTER_CRITICAL();
 switch (wait_type) { /* (5) */
 case OS_FLAG_WAIT_SET_ALL: /* See if all required flags are set */
 flags_rdy = pgrp->OSFlagFlags & flags; /* (6) Extract only the bits we want */
 if (flags_rdy == flags) { /* (7) Must match ALL the bits that we want */
 if (consume == TRUE) { /* (8) See if we need to consume the flags */
 pgrp->OSFlagFlags &= ~flags_rdy; /* (9) Clear ONLY the flags that we wanted */
 }
 flags_cur = pgrp->OSFlagFlags; /* (10) Will return the state of the group */
 OS_EXIT_CRITICAL(); /* Yes, condition met, return to caller */
 *err = OS_NO_ERR;
 return (flags_cur); /* (11) */
 } else { /* (12) Block task until events occur or timeout */
 OS_FlagBlock(pgrp, &node, flags, wait_type, timeout);
 OS_EXIT_CRITICAL();
 }
 break;

 case OS_FLAG_WAIT_SET_ANY:
 flags_rdy = pgrp->OSFlagFlags & flags; /* (13) Extract only the bits we want */
 if (flags_rdy != (OS_FLAGS)0) { /* (14) See if any flag set */
 if (consume == TRUE) { /* (15) See if we need to consume the flags */
 pgrp->OSFlagFlags &= ~flags_rdy; /* (16) Clear ONLY the flags that we got */
 }
 flags_cur = pgrp->OSFlagFlags; /* (17) Will return the state of the group */
 OS_EXIT_CRITICAL(); /* Yes, condition met, return to caller */
 *err = OS_NO_ERR;
 return (flags_cur); /* (18) */
 } else { /* (19) Block task until events occur or timeout */
 OS_FlagBlock(pgrp, &node, flags, wait_type, timeout);
 OS_EXIT_CRITICAL();
 }
 break;

#if OS_FLAG_WAIT_CLR_EN > 0
 case OS_FLAG_WAIT_CLR_ALL: /* See if all required flags are cleared */
 flags_rdy = ~pgrp->OSFlagFlags & flags; /* Extract only the bits we want */
 if (flags_rdy == flags) { /* Must match ALL the bits that we want */
 if (consume == TRUE) { /* See if we need to consume the flags */
 pgrp->OSFlagFlags |= flags_rdy; /* Set ONLY the flags that we wanted */
 }
 flags_cur = pgrp->OSFlagFlags; /* Will return the state of the group */
 OS_EXIT_CRITICAL(); /* Yes, condition met, return to caller */
 *err = OS_NO_ERR;
 return (flags_cur);
 } else { /* Block task until events occur or timeout */
 OS_FlagBlock(pgrp, &node, flags, wait_type, timeout);
 OS_EXIT_CRITICAL();
 }
 break;

 case OS_FLAG_WAIT_CLR_ANY:
 flags_rdy = ~pgrp->OSFlagFlags & flags; /* Extract only the bits we want */

 AN1007 - 13

 µC/OS-II and Event Flags

 if (flags_rdy != (OS_FLAGS)0) { /* See if any flag cleared */
 if (consume == TRUE) { /* See if we need to consume the flags */
 pgrp->OSFlagFlags |= flags_rdy; /* Set ONLY the flags that we got */
 }
 flags_cur = pgrp->OSFlagFlags; /* Will return the state of the group */
 OS_EXIT_CRITICAL(); /* Yes, condition met, return to caller */
 *err = OS_NO_ERR;
 return (flags_cur);
 } else { /* Block task until events occur or timeout */
 OS_FlagBlock(pgrp, &node, flags, wait_type, timeout);
 OS_EXIT_CRITICAL();
 }
 break;
#endif

 default:
 OS_EXIT_CRITICAL();
 flags_cur = (OS_FLAGS)0;
 *err = OS_FLAG_ERR_WAIT_TYPE;
 return (flags_cur);
 }
 OS_Sched(); /* (20) Find next HPT ready to run */
 OS_ENTER_CRITICAL();
 if (OSTCBCur->OSTCBStat & OS_STAT_FLAG) { /* (21) Have we timed-out? */
 OS_FlagUnlink(&node); /* (22) */
 OSTCBCur->OSTCBStat = OS_STAT_RDY; /* Yes, make task ready-to-run */
 OS_EXIT_CRITICAL();
 flags_cur = (OS_FLAGS)0;
 err = OS_TIMEOUT; / Indicate that we timed-out waiting */
 } else {
 if (consume == TRUE) { /* (23) See if we need to consume the flags */
 switch (wait_type) {
 case OS_FLAG_WAIT_SET_ALL:
 case OS_FLAG_WAIT_SET_ANY: /* (24) Clear ONLY the flags we got */
 pgrp->OSFlagFlags &= ~OSTCBCur->OSTCBFlagsRdy;
 break;

 case OS_FLAG_WAIT_CLR_ALL:
 case OS_FLAG_WAIT_CLR_ANY: /* Set ONLY the flags we got */
 pgrp->OSFlagFlags |= OSTCBCur->OSTCBFlagsRdy;
 break;
 }
 }
 flags_cur = pgrp->OSFlagFlags; /* (25) */
 OS_EXIT_CRITICAL();
 err = OS_NO_ERR; / Event(s) must have occurred */
 }
 return (flags_cur);
}

Listing 3, Waiting for event(s) of an event flag group.

AN1007 - 14

µC/OS-II and Event Flags

static void OS_FlagBlock (OS_FLAG_GRP *pgrp, OS_FLAG_NODE *pnode, OS_FLAGS flags, INT8U wait_type, INT16U
timeout)
{
 OS_FLAG_NODE *pnode_next;

 OSTCBCur->OSTCBStat |= OS_STAT_FLAG; /* (1) */
 OSTCBCur->OSTCBDly = timeout; /* Store timeout in task's TCB */
#if OS_TASK_DEL_EN > 0
 OSTCBCur->OSTCBFlagNode = pnode; /* (2) TCB to link to node */
#endif
 pnode->OSFlagNodeFlags = flags; /* (3) Save the flags that we need to wait for */
 pnode->OSFlagNodeWaitType = wait_type; /* Save the type of wait we are doing */
 pnode->OSFlagNodeTCB = (void *)OSTCBCur; /* (4) Link to task's TCB */
 pnode->OSFlagNodeNext = pgrp->OSFlagWaitList; /* (5) Add node at beginning of event flag wait list */
 pnode->OSFlagNodePrev = (void *)0; /* (6) */
 pnode->OSFlagNodeFlagGrp = (void *)pgrp; /* (7) Link to Event Flag Group */
 pnode_next = pgrp->OSFlagWaitList;
 if (pnode_next != (void *)0) { /* Is this the first NODE to insert? */
 pnode_next->OSFlagNodePrev = pnode; /* (8) No, link in doubly linked list */
 }
 pgrp->OSFlagWaitList = (void *)pnode; /* (9) */
 /* (10) Suspend current task until flag(s) received */
 if ((OSRdyTbl[OSTCBCur->OSTCBY] &= ~OSTCBCur->OSTCBBitX) == 0) {
 OSRdyGrp &= ~OSTCBCur->OSTCBBitY;
 }
}

Listing 4, Adding a task to the event flag group wait list.

static void OS_FlagUnlink (OS_FLAG_NODE *pnode)
{
 OS_TCB *ptcb;
 OS_FLAG_GRP *pgrp;
 OS_FLAG_NODE *pnode_prev;
 OS_FLAG_NODE *pnode_next;

 pnode_prev = pnode->OSFlagNodePrev; /* Get pointers to neighboring nodes */
 pnode_next = pnode->OSFlagNodeNext;
 if (pnode_prev == (OS_FLAG_NODE *)0) { /* Is it first node in wait list? */
 pgrp = pnode->OSFlagNodeFlagGrp; /* Yes, Point to event flag group */
 pgrp->OSFlagWaitList = (void *)pnode_next; /* Update list for new 1st node */
 if (pnode_next != (OS_FLAG_NODE *)0) {
 pnode_next->OSFlagNodePrev = (OS_FLAG_NODE *)0; /* Link new 1st node PREV to NULL */
 }
 } else { /* No, A node somewhere in the list */
 pnode_prev->OSFlagNodeNext = pnode_next; /* Link around the node to unlink */
 if (pnode_next != (OS_FLAG_NODE *)0) { /* Was this the LAST node? */
 pnode_next->OSFlagNodePrev = pnode_prev; /* No, Link around current node */
 }
 }
 ptcb = (OS_TCB *)pnode->OSFlagNodeTCB;
#if OS_TASK_DEL_EN > 0
 ptcb->OSTCBFlagNode = (void *)0;
#endif
}

Listing 5, Removing an OS_FLAG_NODE from the wait list.

 AN1007 - 15

 µC/OS-II and Event Flags

Setting or Clearing event(s) in an Event Flag Group, OSFlagPost()
The code to either setting or clearing bits in an event flag group is done by calling OSFlagPost() and
the code for this function is shown in listing 6.

Assuming that the configuration constant OS_ARG_CHK_EN is set to 1, OSFlagPost() makes sure that
the ‘handle’ pgrp is not a NULL pointer L6(1) and that pgrp points to an event flag group L6(2) that
should have been created by OSFlagCreate().

Depending on the option you specified in the opt argument of OSFlagPost() L6(3), the flags specified
in the flags argument will either be SET (when opt == OS_FLAG_SET) L6(4) or CLEARED (when opt
== OS_FLAG_CLR) L6(5). If opt is not one of the two choices, the call is aborted and an error code is
returned to the caller.

We next start by assuming that POSTing doesn’t make a higher priority task ready-to-run and thus, we
set the BOOLEAN variable sched to FALSE, L6(7). If this assumption is not verified because we will make
a higher-priority-task ready-to-run then sched will simply be set to TRUE.

We then go through the wait list to see if any tasks is waiting on one or more events. If the wait list is
empty (L6(8)), we simply get the current state of the event flag bits (L6(16)) and return this information to
the caller (L6(17)).

If there are tasks waiting on the event flag group, we go through the list of OS_FLAG_NODEs to see if the
new event flag bits now satisfy any of the waiting tasks conditions. Each one of the tasks can be waiting
for one of four conditions, L6(9):

1) ALL of the bits specified in the PEND call to be set.
2) ANY of the bits specified in the PEND call to be set.
3) ALL of the bits specified in the PEND call to be cleared.
4) ANY of the bits specified in the PEND call to be cleared.

Note that the last two condition can be ‘compiled-out’ by setting OS_FLAG_WAIT_CLR_EN to 0 (see
OS_CFG.H). You would do this if you didn’t need the functionality of waiting for cleared bits and/or you
need to reduce the amount of ROM in your product. When a waiting task’s condition is satisfied (L6(10)),
the waiting task is readied by calling OS_FlagTaskRdy() (L6(11)) (see Listing 7). Because a task is
made ready-to-run, the scheduler will be called, L6(12). However, we will only do this after going through
all waiting tasks because, there is no need to call the scheduler every time a task is made ready-to-run.

OS_FLAGS OSFlagPost (OS_FLAG_GRP *pgrp, OS_FLAGS flags, INT8U opt, INT8U *err)
{
#if OS_CRITICAL_METHOD == 3 /* Allocate storage for CPU status register */
 OS_CPU_SR cpu_sr;
#endif
 OS_FLAG_NODE *pnode;
 BOOLEAN sched;
 OS_FLAGS flags_cur;
 OS_FLAGS flags_rdy;

#if OS_ARG_CHK_EN > 0
 if (pgrp == (OS_FLAG_GRP *)0) { /* (1) Validate 'pgrp' */
 *err = OS_FLAG_INVALID_PGRP;
 return ((OS_FLAGS)0);
 }
 if (pgrp->OSFlagType != OS_EVENT_TYPE_FLAG) { /* (2) Make sure we are pointing to an event flag grp */
 *err = OS_ERR_EVENT_TYPE;
 return ((OS_FLAGS)0);
 }
#endif

AN1007 - 16

µC/OS-II and Event Flags

 OS_ENTER_CRITICAL();
 switch (opt) { /* (3) Determine whether we need to SET or CLEAR bits */
 case OS_FLAG_CLR:
 pgrp->OSFlagFlags &= ~flags; /* (4) Clear the flags specified in the group */
 break;

 case OS_FLAG_SET:
 pgrp->OSFlagFlags |= flags; /* (5) Set the flags specified in the group */
 break;

 default:
 OS_EXIT_CRITICAL(); /* (6) INVALID operation! */
 *err = OS_FLAG_INVALID_OPT;
 return ((OS_FLAGS)0);
 }
 sched = FALSE; /* (7) Indicate that we don't need rescheduling */
 pnode = pgrp->OSFlagWaitList;
 while (pnode != (OS_FLAG_NODE *)0) { /* (8) Go through all tasks waiting on event flag(s) */
 switch (pnode->OSFlagNodeWaitType) {
 case OS_FLAG_WAIT_SET_ALL: /* (9) See if all req. flags are set for current node */
 flags_rdy = pgrp->OSFlagFlags & pnode->OSFlagNodeFlags;
 if (flags_rdy == pnode->OSFlagNodeFlags) { /* (10) */
 if (OS_FlagTaskRdy(pnode, flags_rdy) == TRUE) {/* (11) Make task RTR, event(s) Rx'd */
 sched = TRUE; /* (12) When done we will reschedule */
 }
 }
 break;

 case OS_FLAG_WAIT_SET_ANY: /* See if any flag set */
 flags_rdy = pgrp->OSFlagFlags & pnode->OSFlagNodeFlags;
 if (flags_rdy != (OS_FLAGS)0) {
 if (OS_FlagTaskRdy(pnode, flags_rdy) == TRUE) {/* Make task RTR, event(s) Rx'd */
 sched = TRUE; /* When done we will reschedule */
 }
 }
 break;

#if OS_FLAG_WAIT_CLR_EN > 0
 case OS_FLAG_WAIT_CLR_ALL: /* See if all req. flags are set for current node */
 flags_rdy = ~pgrp->OSFlagFlags & pnode->OSFlagNodeFlags;
 if (flags_rdy == pnode->OSFlagNodeFlags) {
 if (OS_FlagTaskRdy(pnode, flags_rdy) == TRUE) {/* Make task RTR, event(s) Rx'd */
 sched = TRUE; /* When done we will reschedule */
 }
 }
 break;

 case OS_FLAG_WAIT_CLR_ANY: /* See if any flag set */
 flags_rdy = ~pgrp->OSFlagFlags & pnode->OSFlagNodeFlags;
 if (flags_rdy != (OS_FLAGS)0) {
 if (OS_FlagTaskRdy(pnode, flags_rdy) == TRUE) {/* Make task RTR, event(s) Rx'd */
 sched = TRUE; /* When done we will reschedule */
 }
 }
 break;
#endif
 }
 pnode = pnode->OSFlagNodeNext; /* (13) Point to next task waiting for event flag(s) */
 }
 OS_EXIT_CRITICAL();
 if (sched == TRUE) { /* (14) */
 OS_Sched(); /* (15) */
 }
 OS_ENTER_CRITICAL();
 flags_cur = pgrp->OSFlagFlags; /* (16) */
 OS_EXIT_CRITICAL();
 *err = OS_NO_ERR;
 return (flags_cur); /* (17) */
}

Listing 6, Setting or Clearing bits (i.e. events) in an Event Flag Group.

We of course proceed to the next node by following the linked list, L6(13).

When we have gone through the whole waiting list, we examine the sched flag (L6(14)) to see if we need
to run the scheduler (L6(15)) and thus possibly perform a context switch to the higher priority task that
just received the event flag(s) it was waiting for. OSFlagPost() returns the current state of the event
flag group, L6(17).

 AN1007 - 17

 µC/OS-II and Event Flags

You should note that interrupts are disabled while we are going through the wait list. The implication is
that OSFlagPost() can potentially disable interrupts for a long period of time, especially if multiple tasks
are made ready-to-run.

As previously mentioned, the code in listing 7 is executed to make a task ready-to-run. This is a standard
procedure in µC/OS-II except for the fact that the OS_FLAG_NODE needs to be unlinked from the waiting
list of the event flag group, L7(3). Note that even though this function ‘removes’ the waiting task from the
event flag group wait list, the task could still be suspended and may not be ready-to-run. This is why the
BOOLEAN variable sched is used and returned to the caller.

static BOOLEAN OS_FlagTaskRdy (OS_FLAG_NODE *pnode, OS_FLAGS flags_rdy)
{
 OS_TCB *ptcb;
 BOOLEAN sched;

 ptcb = (OS_TCB *)pnode->OSFlagNodeTCB; /* Point to TCB of waiting task */
 ptcb->OSTCBDly = 0;
 ptcb->OSTCBFlagsRdy = flags_rdy;
 ptcb->OSTCBStat &= ~OS_STAT_FLAG;
 if (ptcb->OSTCBStat == OS_STAT_RDY) { /* Put task into ready list */
 OSRdyGrp |= ptcb->OSTCBBitY;
 OSRdyTbl[ptcb->OSTCBY] |= ptcb->OSTCBBitX;
 sched = TRUE; /* (1) */
 } else {
 sched = FALSE; /* (2) */
 }
 OS_FlagUnlink(pnode); /* (3) */
 return (sched);
}

Listing 7, Make a waiting Task Ready-to-Run.

AN1007 - 18

µC/OS-II and Event Flags

Looking for event(s) of an Event Flag Group, OSFlagAccept()
The code to look for desired event(s) from an event flag group without waiting is shown in listing 8. This
function is quite similar to OSFlagPend() except that the caller will not be suspended (i.e. blocked)
should the event(s) not be present. The only two things that are different are:

1) OSFlagAccept() can be called from an ISR unlike some of the other calls.
2) If the conditions are NOT met, the call does not block and simply returns an error code that the

caller should check.

OS_FLAGS OSFlagAccept (OS_FLAG_GRP *pgrp, OS_FLAGS flags, INT8U wait_type, INT8U *err)
{
#if OS_CRITICAL_METHOD == 3 /* Allocate storage for CPU status register */
 OS_CPU_SR cpu_sr;
#endif
 OS_FLAGS flags_cur;
 OS_FLAGS flags_rdy;
 BOOLEAN consume;

#if OS_ARG_CHK_EN > 0
 if (pgrp == (OS_FLAG_GRP *)0) { /* Validate 'pgrp' */
 *err = OS_FLAG_INVALID_PGRP;
 return ((OS_FLAGS)0);
 }
 if (pgrp->OSFlagType != OS_EVENT_TYPE_FLAG) { /* Validate event block type */
 *err = OS_ERR_EVENT_TYPE;
 return ((OS_FLAGS)0);
 }
#endif
 if (wait_type & OS_FLAG_CONSUME) { /* See if we need to consume the flags */
 wait_type &= ~OS_FLAG_CONSUME;
 consume = TRUE;
 } else {
 consume = FALSE;
 }

 OS_ENTER_CRITICAL();
 switch (wait_type) {
 case OS_FLAG_WAIT_SET_ALL: /* See if all required flags are set */
 flags_rdy = pgrp->OSFlagFlags & flags; /* Extract only the bits we want */
 if (flags_rdy == flags) { /* Must match ALL the bits that we want */
 if (consume == TRUE) { /* See if we need to consume the flags */
 pgrp->OSFlagFlags &= ~flags_rdy; /* Clear ONLY the flags that we wanted */
 }
 flags_cur = pgrp->OSFlagFlags; /* Will return the state of the group */
 OS_EXIT_CRITICAL(); /* Yes, condition met, return to caller */
 *err = OS_NO_ERR;
 } else {
 flags_cur = pgrp->OSFlagFlags;
 OS_EXIT_CRITICAL();
 *err = OS_FLAG_ERR_NOT_RDY;
 }
 break;

 case OS_FLAG_WAIT_SET_ANY:
 flags_rdy = pgrp->OSFlagFlags & flags; /* Extract only the bits we want */
 if (flags_rdy != (OS_FLAGS)0) { /* See if any flag set */
 if (consume == TRUE) { /* See if we need to consume the flags */
 pgrp->OSFlagFlags &= ~flags_rdy; /* Clear ONLY the flags that we got */
 }
 flags_cur = pgrp->OSFlagFlags; /* Will return the state of the group */
 OS_EXIT_CRITICAL(); /* Yes, condition met, return to caller */
 *err = OS_NO_ERR;
 } else {
 flags_cur = pgrp->OSFlagFlags;
 OS_EXIT_CRITICAL();
 *err = OS_FLAG_ERR_NOT_RDY;
 }
 break;

#if OS_FLAG_WAIT_CLR_EN > 0
 case OS_FLAG_WAIT_CLR_ALL: /* See if all required flags are cleared */
 flags_rdy = ~pgrp->OSFlagFlags & flags; /* Extract only the bits we want */
 if (flags_rdy == flags) { /* Must match ALL the bits that we want */
 if (consume == TRUE) { /* See if we need to consume the flags */

 AN1007 - 19

 µC/OS-II and Event Flags

 pgrp->OSFlagFlags |= flags_rdy; /* Set ONLY the flags that we wanted */
 }
 flags_cur = pgrp->OSFlagFlags; /* Will return the state of the group */
 OS_EXIT_CRITICAL(); /* Yes, condition met, return to caller */
 *err = OS_NO_ERR;
 } else {
 flags_cur = pgrp->OSFlagFlags;
 OS_EXIT_CRITICAL();
 *err = OS_FLAG_ERR_NOT_RDY;
 }
 break;

 case OS_FLAG_WAIT_CLR_ANY:
 flags_rdy = ~pgrp->OSFlagFlags & flags; /* Extract only the bits we want */
 if (flags_rdy != (OS_FLAGS)0) { /* See if any flag cleared */
 if (consume == TRUE) { /* See if we need to consume the flags */
 pgrp->OSFlagFlags |= flags_rdy; /* Set ONLY the flags that we got */
 }
 flags_cur = pgrp->OSFlagFlags; /* Will return the state of the group */
 OS_EXIT_CRITICAL(); /* Yes, condition met, return to caller */
 *err = OS_NO_ERR;
 } else {
 flags_cur = pgrp->OSFlagFlags;
 OS_EXIT_CRITICAL();
 *err = OS_FLAG_ERR_NOT_RDY;
 }
 break;
#endif

 default:
 OS_EXIT_CRITICAL();
 flags_cur = (OS_FLAGS)0;
 *err = OS_FLAG_ERR_WAIT_TYPE;
 break;
 }
 return (flags_cur);
}

Listing 8, Looking for Event Flags without waiting.

AN1007 - 20

µC/OS-II and Event Flags

Querying an Event Flag Group, OSFlagQuery()
OSFlagQuery() allows your code to get the current value of the event flag group. The code for this
function is shown in listing 9.

OSFlagQuery() is passed two arguments: pgrp contains a pointer to the event flag group which is
returned what OSFlagCreate() returns when the event flag group is created and, err which is a
pointer to an error code that will let the caller know whether the call was successful or not.

As with all µC/OS-II calls, OSFlagQuery() performs argument checking if this feature is enabled by
OS_ARG_CHK_EN L9(1) and L9(2).

If there are no errors, OSFlagQuery() obtains the current state of the event flags L9(3) and returns this
to the caller, L9(4).

OS_FLAGS OSFlagQuery (OS_FLAG_GRP *pgrp, INT8U *err)
{
#if OS_CRITICAL_METHOD == 3 /* Allocate storage for CPU status register */
 OS_CPU_SR cpu_sr;
#endif
 OS_FLAGS flags;

#if OS_ARG_CHK_EN > 0
 if (pgrp == (OS_FLAG_GRP *)0) { /* (1) Validate 'pgrp' */
 *err = OS_FLAG_INVALID_PGRP;
 return ((OS_FLAGS)0);
 }
 if (pgrp->OSFlagType != OS_EVENT_TYPE_FLAG) { /* (2) Validate event block type */
 *err = OS_ERR_EVENT_TYPE;
 return ((OS_FLAGS)0);
 }
#endif
 OS_ENTER_CRITICAL();
 flags = pgrp->OSFlagFlags; /* (3) Get current event flags */
 OS_EXIT_CRITICAL();
 *err = OS_NO_ERR;
 return (flags); /* (4) Return the current value of the event flags */
}

Listing 9, Obtaining the current flags of an event flag group.

 AN1007 - 21

 µC/OS-II and Event Flags

OSFlagAccept()
OS_FLAGS OSFlagAccept(OS_FLAG_GRP *pgrp, OS_FLAGS flags, INT8U wait_type, INT8U *err);

File Called from Code enabled by

OS_FLAG.C Task OS_FLAG_EN &&
OS_FLAG_ACCEPT_EN

OSFlagAccept() allows you to check the status of a combination of bits to be either set or cleared in an event
flag group. Your application can check for ANY bit to be set/cleared or ALL bits to be set/cleared. This function
behaves exactly as OSFlagPend() except that the caller will NOT block if the desired event flags are not present.

Arguments

pgrp is a pointer to the event flag group. This pointer is returned to your application when the event flag group is
created (see OSFlagCreate()).

flags is a bit pattern indicating which bit(s) (i.e. flags) you wish to check. The bits you want are specified by
setting the corresponding bits in flags.

wait_type specifies whether you want ALL bits to be set/cleared or ANY of the bits to be set/cleared. You can
specify the following argument:

OS_FLAG_WAIT_CLR_ALL You will check ALL bits in 'flags' to be clear (0)
OS_FLAG_WAIT_CLR_ANY You will check ANY bit in 'flags' to be clear (0)
OS_FLAG_WAIT_SET_ALL You will check ALL bits in 'flags' to be set (1)
OS_FLAG_WAIT_SET_ANY You will check ANY bit in 'flags' to be set (1)

You can add OS_FLAG_CONSUME if you want the event flag(s) to be ‘consumed’ by the call.
For example, to wait for ANY flag in a group and then clear the flags that are present, set
wait_type to:

OS_FLAG_WAIT_SET_ANY + OS_FLAG_CONSUME

err a pointer to an error code and can be:

OS_NO_ERR No error
OS_ERR_EVENT_TYPE You are not pointing to an event flag group
OS_FLAG_ERR_WAIT_TYPE You didn't specify a proper 'wait_type' argument.
OS_FLAG_INVALID_PGRP You passed a NULL pointer instead of the event flag handle.
OS_FLAG_ERR_NOT_RDY The desired flags you are waiting for are not available.

Returned Value

The state of the flags in the event flag group.

Notes/Warnings

1) The event flag group must be created before it is used.
2) This function does NOT block if the desired flags are not present.

AN1007 - 22

µC/OS-II and Event Flags

Example

#define ENGINE_OIL_PRES_OK 0x01
#define ENGINE_OIL_TEMP_OK 0x02
#define ENGINE_START 0x04

OS_FLAG_GRP *EngineStatus;

void Task (void *pdata)
{
 INT8U err;
 OS_FLAGS value;

 pdata = pdata;
 for (;;) {
 value = OSFlagAccept(EngineStatus, ENGINE_OIL_PRES_OK + ENGINE_OIL_TEMP_OK, OS_FLAG_WAIT_SET_ALL,
&err);
 switch (err) {
 case OS_NO_ERR:
 /* Desired flags are available */
 break;

 case OS_FLAG_ERR_NOT_RDY:
 /* The desired flags are NOT available */
 break;
 }
 .
 .
 }
}

 AN1007 - 23

 µC/OS-II and Event Flags

OSFlagCreate()
OS_FLAG_GRP *OSFlagCreate(OS_FLAGS flags, INT8U *err);

File Called from Code enabled by

OS_FLAG.C Task or startup code OS_FLAG_EN

OSFlagCreate() is used to create and initialize an event flag group.

Arguments

flags contains the initial value to store in the event flag group.

err is a pointer to a variable which will be used to hold an error code. The error code can be one of the following:

OS_NO_ERR if the call was successful and the event flag group was created.
OS_ERR_CREATE_ISR if you attempted to create an event flag group from an ISR.
OS_FLAG_GRP_DEPLETED if there are no more event flag groups available. You will need to

increase the value of OS_MAX_FLAGS in OS_CFG.H.

Returned Value

A pointer to the event flag group if a free one is available. If no event flag group is available, OSFlagCreate()
will return a NULL pointer.

Notes/Warnings

1) Event flag groups must be created by this function before they can be used by the other services.

Example

OS_FLAG_GRP *EngineStatus;

void main (void)
{
 INT8U err;

 .
 .
 OSInit(); /* Initialize µC/OS-II */
 .
 .
 EngineStatus = OSFlagCreate(0x00, &err); /* Create an event flag group containing the engine’s status */
 .
 .
 OSStart(); /* Start Multitasking */
}

AN1007 - 24

µC/OS-II and Event Flags

OSFlagDel()
OS_FLAG_GRP *OSFlagDel(OS_FLAG_GRP *pgrp, INT8U opt, INT8U *err);

File Called from Code enabled by

OS_FLAG.C Task OS_FLAG_EN and
OS_FLAG_DEL_EN

OSFlagDel() is used to delete an event flag group. This is a dangerous function to use because multiple tasks
could be relying on the presence of the event flag group. You should always use this function with great care.
Generally speaking, before you would delete an event flag group, you would first delete all the tasks that access the
event flag group.

Arguments

pgrp is a pointer to the event flag group. This pointer is returned to your application when the event flag group is
created (see OSFlagCreate()).

opt specifies whether you want to delete the event flag group only if there are no pending tasks
(OS_DEL_NO_PEND) or whether you always want to delete the event flag group regardless of whether tasks are
pending or not (OS_DEL_ALWAYS). In this case, all pending task will be readied.

err is a pointer to a variable which will be used to hold an error code. The error code can be one of the following:

OS_NO_ERR if the call was successful and the event flag group was deleted.
OS_ERR_DEL_ISR if you attempted to delete an event flag group from an ISR.
OS_ERR_EVENT_TYPE if pgrp is not pointing to an event flag group.
OS_ERR_INVALID_OPT if you didn’t specify one of the two options mentioned above.
OS_ERR_TASK_WAITING if one or more task were waiting on the event flag group and and you

specified OS_DEL_NO_PEND.
OS_FLAG_INVALID_PGRP if you passed a NULL pointer in pgrp.

Returned Value

A NULL pointer if the event flag group is deleted or pgrp if the event flag group was not deleted. In the latter case,
you would need to examine the error code to determine the reason.

Notes/Warnings

1) You should use this call with care because other tasks may expect the presence of the event flag group.
2) This call can potentially disable interrupts for a long time. The interrupt disable time is directly proportional to

the number of tasks waiting on the event flag group.

 AN1007 - 25

 µC/OS-II and Event Flags

Example

OS_FLAG_GRP *EngineStatusFlags;

void Task (void *pdata)
{
 INT8U err;
 OS_FLAG_GRP *pgrp;

 pdata = pdata;
 while (1) {
 .
 .
 pgrp = OSFlagDel(EngineStatusFlags, OS_DEL_ALWAYS, &err);
 if (pgrp == (OS_FLAG_GRP *)0) {
 /* The event flag group was deleted */
 }
 .
 .
 }
}

AN1007 - 26

µC/OS-II and Event Flags

OSFlagPend()
OS_FLAGS OSFlagPend(OS_FLAG_GRP *pgrp, OS_FLAGS flags, INT8U wait_type, INT16U timeout, INT8U *err);

File Called from Code enabled by

OS_FLAG.C Task only OS_FLAG_EN

OSFlagPend() is used to have a task wait for a combination of conditions (i.e. events or bits) to be set (or
cleared) in an event flag group. You application can wait for ANY condition to be set (or cleared) or, ALL
conditions to be either set or cleared. If the events that the calling task desires are not available then, the calling task
will be blocked until the desired conditions are satisfied or, the specified timeout expires.

Arguments

pgrp is a pointer to the event flag group. This pointer is returned to your application when the event flag group is
created (see OSFlagCreate()).

flags is a bit pattern indicating which bit(s) (i.e. flags) you wish to check. The bits you want are specified by
setting the corresponding bits in flags.

wait_type specifies whether you want ALL bits to be set/cleared or ANY of the bits to be set/cleared. You can
specify the following argument:

OS_FLAG_WAIT_CLR_ALL You will check ALL bits in 'flags' to be clear (0)
OS_FLAG_WAIT_CLR_ANY You will check ANY bit in 'flags' to be clear (0)
OS_FLAG_WAIT_SET_ALL You will check ALL bits in 'flags' to be set (1)
OS_FLAG_WAIT_SET_ANY You will check ANY bit in 'flags' to be set (1)

You can also specify whether the flags will be ‘consumed’ by adding OS_FLAG_CONSUME to the
wait_type. For example, to wait for ANY flag in a group and then CLEAR the flags that
satisfy the condition, set wait_type to:

OS_FLAG_WAIT_SET_ANY + OS_FLAG_CONSUME

err a pointer to an error code and can be:

OS_NO_ERR No error
OS_ERR_PEND_ISR You tried to call OSFlagPend from an ISR which is not allowed.
OS_ERR_EVENT_TYPE You are not pointing to an event flag group
OS_FLAG_ERR_WAIT_TYPE You didn't specify a proper 'wait_type' argument.
OS_FLAG_INVALID_PGRP You passed a NULL pointer instead of the event flag handle.
OS_FLAG_ERR_NOT_RDY The desired flags you are waiting for are not available.
OS_TIMEOUT The flags were not available within the specified amount of time.

Returned Value

The value of the flags in the event flag group after they are consumed (if OS_FLAG_CONSUME is specified) or, the
state of the flags just before OSFlagPend() returns. OSFlagPend() returns 0 if a timeout occurs.

Notes/Warnings

1) The event flag group must be created before it’s used.

 AN1007 - 27

 µC/OS-II and Event Flags

Example

#define ENGINE_OIL_PRES_OK 0x01
#define ENGINE_OIL_TEMP_OK 0x02
#define ENGINE_START 0x04

OS_FLAG_GRP *EngineStatus;

void Task (void *pdata)
{
 INT8U err;
 OS_FLAGS value;

 pdata = pdata;
 for (;;) {
 value = OSFlagPend(EngineStatus,
 ENGINE_OIL_PRES_OK + ENGINE_OIL_TEMP_OK,
 OS_FLAG_WAIT_SET_ALL + OS_FLAG_CONSUME,
 10,
 &err);
 switch (err) {
 case OS_NO_ERR:
 /* Desired flags are available */
 break;

 case OS_TIMEOUT:
 /* The desired flags were NOT available before 10 ticks occurred */
 break;
 }
 .
 .
 }
}

AN1007 - 28

µC/OS-II and Event Flags

OSFlagPost()
OS_FLAGS OSFlagPost(OS_FLAG_GRP *pgrp, OS_FLAGS flags, INT8U opt, INT8U *err);

File Called from Code enabled by

OS_FLAG.C Task or ISR OS_FLAG_EN

You set or clear event flag bits by calling OSFlagPost(). The bits set or cleared are specified in a ‘bit mask’.
OSFlagPost() will ready each task that has it’s desired bits satisfied by this call. You can set or clear bits that
are already set or cleared.

Arguments

pgrp is a pointer to the event flag group. This pointer is returned to your application when the event flag group is
created (see OSFlagCreate()).

flags specifies which bits you want set or cleared. If opt (see below) is OS_FLAG_SET, each bit that is set in
'flags' will set the corresponding bit in the event flag group. e.g. to set bits 0, 4 and 5 you would set flags to
0x31 (note, bit 0 is least significant bit). If opt (see below) is OS_FLAG_CLR, each bit that is set in flags will
CLEAR the corresponding bit in the event flag group. e.g. to clear bits 0, 4 and 5 you would specify 'flags' as
0x31 (note, bit 0 is least significant bit).

opt indicates whether the flags will be set (OS_FLAG_SET) or cleared (OS_FLAG_CLR).

err is a pointer to an error code and can be:

 OS_NO_ERR The call was successfull
 OS_FLAG_INVALID_PGRP You passed a NULL pointer
 OS_ERR_EVENT_TYPE You are not pointing to an event flag group
 OS_FLAG_INVALID_OPT You specified an invalid option

Returned Value

The new value of the event flags.

Notes/Warnings

1) Event flag groups must be created before they are used.
2) The execution time of this function depends on the number of tasks waiting on the event flag group. However,

the execution time is deterministic.
3) The amount of time interrupts are DISABLED also depends on the number of tasks waiting on the event flag

group.

 AN1007 - 29

 µC/OS-II and Event Flags

Example

#define ENGINE_OIL_PRES_OK 0x01
#define ENGINE_OIL_TEMP_OK 0x02
#define ENGINE_START 0x04

OS_FLAG_GRP *EngineStatusFlags;

void TaskX (void *pdata)
{
 INT8U err;

 pdata = pdata;
 for (;;) {
 .
 .
 err = OSFlagPost(EngineStatusFlags, ENGINE_START, OS_FLAG_SET, &err);
 .
 .
 }
}

AN1007 - 30

µC/OS-II and Event Flags

OSFlagQuery()
OS_FLAGS OSFlagQuery(OS_FLAG_GRP *pgrp, INT8U *err);

File Called from Code enabled by

OS_FLAG.C Task or ISR OS_FLAG_EN &&
OS_FLAG_QUERY_EN

OSFlagQuery() is used to obtain the current value of the event flags in a group. At this time, this function does
NOT return the list of tasks waiting for the event flag group.

Arguments

pgrp is a pointer to the event flag group. This pointer is returned to your application when the event flag group is
created (see OSFlagCreate()).

err is a pointer to an error code and can be:

 OS_NO_ERR The call was successfull
 OS_FLAG_INVALID_PGRP You passed a NULL pointer
 OS_ERR_EVENT_TYPE You are not pointing to an event flag group

Returned Value

The state of the flags in the event flag group.

Notes/Warnings

1) The event flag group to query must be created.
2) You can call this function from an ISR.

Example

In this example, we check the contents of the mutex to determine the highest priority task that is waiting for it.

OS_FLAG_GRP *EngineStatusFlags;

void Task (void *pdata)
{
 OS_FLAGS flags;
 INT8U err;

 pdata = pdata;
 for (;;) {
 .
 .
 flags = OSFlagQuery(EngineStatusFlags, &err);
 .
 .
 }
}

 AN1007 - 31

 µC/OS-II and Event Flags

References

µC/OS-II, The Real-Time Kernel
Jean J. Labrosse
R&D Technical Books, 1998
ISBN 0-87930-543-6

Contacts

Micriµm, Inc.
949 Crestview Circle
Weston, FL 33327
954-217-2036
954-217-2037 (FAX)
e-mail: Jean.Labrosse@Micrium.com
WEB: www.Micrium.com

R&D Books, Inc.
1601 W. 23rd St., Suite 200
Lawrence, KS 66046-9950
(785) 841-1631
(785) 841-2624 (FAX)
WEB: http://www.rdbooks.com
e-mail: rdorders@rdbooks.com

AN1007 - 32

mailto:Jean.Labrosse@Micrium.com
http://www.micrium.com/
http://www.rdbooks.com/
mailto:rdorders@rdbooks.com

	© Copyright 2001, Micriµm, Inc.
	µC/OS-II
	and
	Event Flags
	Summary
	Introduction
	Event Flag Internals
	Creating an Event Flag Group, OSFlagCreate()
	Deleting an Event Flag Group, OSFlagDel()
	Waiting for event(s) of an Event Flag Group, OSFlagPend()
	Setting or Clearing event(s) in an Event Flag Group, OSFlagPost()
	Looking for event(s) of an Event Flag Group, OSFlagAccept()
	Querying an Event Flag Group, OSFlagQuery()
	References
	Contacts

