
The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 1

COMPUTERORGANIZATION AND DESIGN
The Hardware/Software Interface

RISC-V
Edition

Chapter 2
Branches and Jumps

These slides are based on the slides by
the authors. The slides doesn’t include all
the material covered in the lecture. The
slides will be explained, modified, and

sometime corrected in the lecture.

Chapter 2 — Instructions: Language of the Computer — 2

Conditional Operations
 Branch to a labeled instruction if a condition is

true
 Otherwise, continue sequentially

 beq rs1, rs2, L1
 if (rs1 == rs2) branch to instruction labeled L1

 bne rs1, rs2, L1
 if (rs1 != rs2) branch to instruction labeled L1

§2.7 Instructions for M
aking D

ecisions

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 2

Conditional Operations

 beq rs1, rs2, L // if(R[rs1]==R[rs2]) PC=PC+{Imm,1b’0}

Chapter 2 — Instructions: Language of the Computer — 3

rs2 rs1 funct3 opcode

7 bits 7 bits5 bits 5 bits 5 bits3 bits

Imm[12|10-5] Imm[4:1|11]

Chapter 2 — Instructions: Language of the Computer — 4

Compiling If Statements

 C code:

if (i==j) f = g+h;
else f = g-h;

 f, g, … in x19, x20, …

 Compiled RISC-V code:

bne x22, x23, Else
add x19, x20, x21
beq x0,x0,Exit // unconditional

Else: sub x19, x20, x21
Exit: …

Assembler calculates addresses

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 3

Chapter 2 — Instructions: Language of the Computer — 5

Compiling Loop Statements
 C code:
while (save[i] == k) i += 1;

 i in x22, k in x24, address of save in x25
 Compiled RISC-V code:
Loop: slli x10, x22, 3 //x10=i8

add x10, x10, x25 //x10=save[i]
ld x9, 0(x10) //x9=save[i]
bne x9, x24, Exit //save[i]==k?
addi x22, x22, 1 //i++;
beq x0, x0, Loop

Exit: …

Chapter 2 — Instructions: Language of the Computer — 6

Basic Blocks

 A basic block is a sequence of instructions
with
 No embedded branches (except at end)

 No branch targets (except at beginning)

 A compiler identifies basic
blocks for optimization

 An advanced processor
can accelerate execution
of basic blocks

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 4

Chapter 2 — Instructions: Language of the Computer — 7

More Conditional Operations
 blt rs1, rs2, L1

 if (rs1 < rs2) branch to instruction labeled L1

 bge rs1, rs2, L1

 if (rs1 >= rs2) branch to instruction labeled L1

 Example
 if (a > b) a += 1;

 a in x22, b in x23
bge x23, x22, Exit // branch if b >= a

addi x22, x22, 1

Exit:

Chapter 2 — Instructions: Language of the Computer — 8

Signed vs. Unsigned

 Signed comparison: blt, bge

 Unsigned comparison: bltu, bgeu

 Example
 x22 = 1111 1111 1111 1111 1111 1111 1111 1111

 x23 = 0000 0000 0000 0000 0000 0000 0000 0001

 x22 < x23 // signed

 –1 < +1

 x22 > x23 // unsigned

 +4,294,967,295 > +1

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 5

Bounds Check

 We can check index out of bounds for
array by treating signed numbers as
unsigned
 Check for 0 x N

 bgeu x20, x10, IndexOutOfBounds

 x20 is x and x10 is N (branch if x20> x11 OR
x20 is negative)

 By definition, any –ve number is greater
than any +ve number if treated unsigned
(MSB=1 for neg, MSB = 0 for +vbe)

Chapter 2 — Instructions: Language of the Computer — 9

Memory Layout
 Reserved (OS)

 Text program

 Static data: global
variables, static variables
(in C) constant arrays and
strings

 Dynamic data: heap
(malloc)

 Stack: automatic storage
(local to the function)

Chapter 2 — Instructions: Language of the Computer — 10

Reserved

TEXT

Static Data

Local variables
(stack)

Dynamic data
(heap)

