
Morgan Kaufmann Publishers 23 October, 2017

Chapter 3 — Arithmetic for Computers 1

COMPUTERORGANIZATION AND DESIGN
The Hardware/Software Interface

RISC-V
Edition

Chapter 3
Arithmetic for Computers

Chapter 3 — Arithmetic for Computers — 2

Arithmetic for Computers

 Operations on integers
 Addition and subtraction

 Multiplication and division

 Dealing with overflow

 Floating-point real numbers
 Representation and operations

§3.1 Introduction

Morgan Kaufmann Publishers 23 October, 2017

Chapter 3 — Arithmetic for Computers 2

Chapter 3 — Arithmetic for Computers — 3

Integer Addition

 Example: 7 + 6
§3.2 A

ddition and S
ubtraction

 Overflow if result out of range
 Adding +ve and –ve operands, no overflow

 Adding two +ve operands
 Overflow if result sign is 1

 Adding two –ve operands
 Overflow if result sign is 0

Chapter 3 — Arithmetic for Computers — 4

Integer Subtraction

 Add negation of second operand

 Example: 7 – 6 = 7 + (–6)
+7: 0000 0000 … 0000 0111
–6: 1111 1111 … 1111 1010
+1: 0000 0000 … 0000 0001

 Overflow if result out of range
 Subtracting two +ve or two –ve operands, no overflow

 Subtracting +ve from –ve operand
 Overflow if result sign is 0

 Subtracting –ve from +ve operand
 Overflow if result sign is 1

Morgan Kaufmann Publishers 23 October, 2017

Chapter 3 — Arithmetic for Computers 3

Chapter 3 — Arithmetic for Computers — 5

Arithmetic for Multimedia

 Graphics and media processing operates
on vectors of 8-bit and 16-bit data
 Use 64-bit adder, with partitioned carry chain

 Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors

 SIMD (single-instruction, multiple-data)

 Saturating operations
 On overflow, result is largest representable

value
 c.f. 2s-complement modulo arithmetic

 E.g., clipping in audio, saturation in video

Adding 2 32-bit Numbers

Chapter 3 — Arithmetic for Computers — 6

Morgan Kaufmann Publishers 23 October, 2017

Chapter 3 — Arithmetic for Computers 4

Add/Sub 2 32-bit Numbers

Chapter 3 — Arithmetic for Computers — 7

Chapter 3 — Arithmetic for Computers — 8

Multiplication

 Start with long-multiplication approach

1000
× 1001

1000
0000
0000
1000
1001000

Length of product is
the sum of operand
lengths

multiplicand

multiplier

product

§3.3 M
ultiplication

Morgan Kaufmann Publishers 23 October, 2017

Chapter 3 — Arithmetic for Computers 5

Chapter 3 — Arithmetic for Computers — 9

Multiplication Hardware

Initially 0

00001000

00001000

00001000

Chapter 3 — Arithmetic for Computers — 10

Multiplication Hardware

Initially 0

00001000
000010000

00001000

Morgan Kaufmann Publishers 23 October, 2017

Chapter 3 — Arithmetic for Computers 6

Chapter 3 — Arithmetic for Computers — 11

Multiplication Hardware

Initially 0

00001000
0000100000

00001000

Chapter 3 — Arithmetic for Computers — 12

Multiplication Hardware

Initially 0

00001000
00001000000

01001000

Morgan Kaufmann Publishers 23 October, 2017

Chapter 3 — Arithmetic for Computers 7

Chapter 3 — Arithmetic for Computers — 13

Optimized Multiplier

 Perform steps in parallel: add/shift

 One cycle per partial-product addition
 That’s ok, if frequency of multiplications is low

Chapter 3 — Arithmetic for Computers — 14

Faster Multiplier

 Uses multiple adders
 Cost/performance tradeoff

 Can be pipelined
 Several multiplication performed in parallel

Morgan Kaufmann Publishers 23 October, 2017

Chapter 3 — Arithmetic for Computers 8

Chapter 3 — Arithmetic for Computers — 15

RISC-V Multiplication

 Four multiply instructions:
 mul: multiply

 Gives the lower 64 bits of the product

 mulh: multiply high
 Gives the upper 64 bits of the product, assuming the

operands are signed

 mulhu: multiply high unsigned
 Gives the upper 64 bits of the product, assuming the

operands are unsigned

 mulhsu: multiply high signed/unsigned
 Gives the upper 64 bits of the product, assuming one

operand is signed and the other unsigned

 Use mulh result to check for 64-bit overflow

Chapter 3 — Arithmetic for Computers — 16

Division
 Check for 0 divisor
 Long division approach

 If divisor ≤ dividend bits
 1 bit in quotient, subtract

 Otherwise
 0 bit in quotient, bring down next

dividend bit

 Restoring division
 Do the subtract, and if remainder

goes < 0, add divisor back

 Signed division
 Divide using absolute values
 Adjust sign of quotient and remainder

as required

1001
1000 1001010

-1000
10
101
1010
-1000

10

n-bit operands yield n-bit
quotient and remainder

quotient

dividend

remainder

divisor

§3.4 D
ivision

Morgan Kaufmann Publishers 23 October, 2017

Chapter 3 — Arithmetic for Computers 9

Chapter 3 — Arithmetic for Computers — 17

Division Hardware

Initially dividend

Initially divisor
in left half

Chapter 3 — Arithmetic for Computers — 18

Optimized Divider

 One cycle per partial-remainder subtraction

 Looks a lot like a multiplier!
 Same hardware can be used for both

Morgan Kaufmann Publishers 23 October, 2017

Chapter 3 — Arithmetic for Computers 10

Chapter 3 — Arithmetic for Computers — 19

Faster Division

 Can’t use parallel hardware as in multiplier
 Subtraction is conditional on sign of remainder

 Faster dividers (e.g. SRT devision)
generate multiple quotient bits per step
 Still require multiple steps

Chapter 3 — Arithmetic for Computers — 20

RISC-V Division

 Four instructions:
 div, rem: signed divide, remainder

 divu, remu: unsigned divide, remainder

 Overflow and division-by-zero don’t
produce errors
 Just return defined results

 Faster for the common case of no error

