
Morgan Kaufmann Publishers 23 October, 2017

Chapter 3 — Arithmetic for Computers 1

COMPUTERORGANIZATION AND DESIGN
The Hardware/Software Interface

RISC-V
Edition

Chapter 3
Arithmetic for Computers

Chapter 3 — Arithmetic for Computers — 2

Arithmetic for Computers

 Operations on integers
 Addition and subtraction

 Multiplication and division

 Dealing with overflow

 Floating-point real numbers
 Representation and operations

§3.1 Introduction

Morgan Kaufmann Publishers 23 October, 2017

Chapter 3 — Arithmetic for Computers 2

Chapter 3 — Arithmetic for Computers — 3

Integer Addition

 Example: 7 + 6
§3.2 A

ddition and S
ubtraction

 Overflow if result out of range
 Adding +ve and –ve operands, no overflow

 Adding two +ve operands
 Overflow if result sign is 1

 Adding two –ve operands
 Overflow if result sign is 0

Chapter 3 — Arithmetic for Computers — 4

Integer Subtraction

 Add negation of second operand

 Example: 7 – 6 = 7 + (–6)
+7: 0000 0000 … 0000 0111
–6: 1111 1111 … 1111 1010
+1: 0000 0000 … 0000 0001

 Overflow if result out of range
 Subtracting two +ve or two –ve operands, no overflow

 Subtracting +ve from –ve operand
 Overflow if result sign is 0

 Subtracting –ve from +ve operand
 Overflow if result sign is 1

Morgan Kaufmann Publishers 23 October, 2017

Chapter 3 — Arithmetic for Computers 3

Chapter 3 — Arithmetic for Computers — 5

Arithmetic for Multimedia

 Graphics and media processing operates
on vectors of 8-bit and 16-bit data
 Use 64-bit adder, with partitioned carry chain

 Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors

 SIMD (single-instruction, multiple-data)

 Saturating operations
 On overflow, result is largest representable

value
 c.f. 2s-complement modulo arithmetic

 E.g., clipping in audio, saturation in video

Adding 2 32-bit Numbers

Chapter 3 — Arithmetic for Computers — 6

Morgan Kaufmann Publishers 23 October, 2017

Chapter 3 — Arithmetic for Computers 4

Add/Sub 2 32-bit Numbers

Chapter 3 — Arithmetic for Computers — 7

Chapter 3 — Arithmetic for Computers — 8

Multiplication

 Start with long-multiplication approach

1000
× 1001

1000
0000
0000
1000
1001000

Length of product is
the sum of operand
lengths

multiplicand

multiplier

product

§3.3 M
ultiplication

Morgan Kaufmann Publishers 23 October, 2017

Chapter 3 — Arithmetic for Computers 5

Chapter 3 — Arithmetic for Computers — 9

Multiplication Hardware

Initially 0

00001000

00001000

00001000

Chapter 3 — Arithmetic for Computers — 10

Multiplication Hardware

Initially 0

00001000
000010000

00001000

Morgan Kaufmann Publishers 23 October, 2017

Chapter 3 — Arithmetic for Computers 6

Chapter 3 — Arithmetic for Computers — 11

Multiplication Hardware

Initially 0

00001000
0000100000

00001000

Chapter 3 — Arithmetic for Computers — 12

Multiplication Hardware

Initially 0

00001000
00001000000

01001000

Morgan Kaufmann Publishers 23 October, 2017

Chapter 3 — Arithmetic for Computers 7

Chapter 3 — Arithmetic for Computers — 13

Optimized Multiplier

 Perform steps in parallel: add/shift

 One cycle per partial-product addition
 That’s ok, if frequency of multiplications is low

Chapter 3 — Arithmetic for Computers — 14

Faster Multiplier

 Uses multiple adders
 Cost/performance tradeoff

 Can be pipelined
 Several multiplication performed in parallel

Morgan Kaufmann Publishers 23 October, 2017

Chapter 3 — Arithmetic for Computers 8

Chapter 3 — Arithmetic for Computers — 15

RISC-V Multiplication

 Four multiply instructions:
 mul: multiply

 Gives the lower 64 bits of the product

 mulh: multiply high
 Gives the upper 64 bits of the product, assuming the

operands are signed

 mulhu: multiply high unsigned
 Gives the upper 64 bits of the product, assuming the

operands are unsigned

 mulhsu: multiply high signed/unsigned
 Gives the upper 64 bits of the product, assuming one

operand is signed and the other unsigned

 Use mulh result to check for 64-bit overflow

Chapter 3 — Arithmetic for Computers — 16

Division
 Check for 0 divisor
 Long division approach

 If divisor ≤ dividend bits
 1 bit in quotient, subtract

 Otherwise
 0 bit in quotient, bring down next

dividend bit

 Restoring division
 Do the subtract, and if remainder

goes < 0, add divisor back

 Signed division
 Divide using absolute values
 Adjust sign of quotient and remainder

as required

1001
1000 1001010

-1000
10
101
1010
-1000

10

n-bit operands yield n-bit
quotient and remainder

quotient

dividend

remainder

divisor

§3.4 D
ivision

Morgan Kaufmann Publishers 23 October, 2017

Chapter 3 — Arithmetic for Computers 9

Chapter 3 — Arithmetic for Computers — 17

Division Hardware

Initially dividend

Initially divisor
in left half

Chapter 3 — Arithmetic for Computers — 18

Optimized Divider

 One cycle per partial-remainder subtraction

 Looks a lot like a multiplier!
 Same hardware can be used for both

Morgan Kaufmann Publishers 23 October, 2017

Chapter 3 — Arithmetic for Computers 10

Chapter 3 — Arithmetic for Computers — 19

Faster Division

 Can’t use parallel hardware as in multiplier
 Subtraction is conditional on sign of remainder

 Faster dividers (e.g. SRT devision)
generate multiple quotient bits per step
 Still require multiple steps

Chapter 3 — Arithmetic for Computers — 20

RISC-V Division

 Four instructions:
 div, rem: signed divide, remainder

 divu, remu: unsigned divide, remainder

 Overflow and division-by-zero don’t
produce errors
 Just return defined results

 Faster for the common case of no error

