
 
 
Create a directory for this lab and perform in it the following groups of tasks: 
 

LabA1.java 
 
1. Write the Java app LabA1 that takes an int via a command-line argument args[0] 

and passes it to the static method toBinaryString(int) of the Integer class. 
Have your app output the returned string. Assume, as a precondition, that args[0] 
parses to an int without exceptions.  

 
2. Compile your program and then run it with argument 5; i.e. issue the command: 
 

java LabA1 5 
 

The output is a string of three bits (3b). A bit is a binary digit and can be either 0 or 1. 
A string of bits is known as a binary pattern.  

 
3. Run the app again with argument 212. The output now consists of eight bits and 

since 8 bits form a byte, we can say the output is made up of one byte or 1B.  
 
4. The bits in a binary pattern are numbered right-to-left starting from 0. Bit number 0 in 

the binary pattern 11010100 is zero while bit number 2 is one. Bit number 0 is called 
the least significant bit (LSb) while the leftmost bit is the most significant bit (MSb). 

 
5. Java represents integers in bits using a positional system in which each position is 

associated with a weight. The weight of bit number k is 2k.  Hence, 11010100 is thus 
(right to left): 0x20+0x21+1x22+0x23+1x24+0x25+1x26+1x27 = 4+16+64+128 = 212. 

 
6. Use the above observation to predict the output of your app when the argument is 

24. Run the app and verify your prediction. Report your results.
 

7. The positional nature of the binary representation implies that bit number 0 of any 
even integer must be zero. Verify by trying several even arguments and report them. 

 
8. If the binary representation of an integer ends (at the least significant end) with 00, 

what can you conclude about the value of the integer?  Use your app to verify. 
 
9. If the binary representation of an integer ends (at the least significant end) with 01, 

what can you conclude about the value of the integer?  Use your app to verify. 
Hint: These two bits would be dropped if you divided the integer by 4. 
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LabA2.java 
 
10. Writing down long binary patterns is tedious and error prone. For this reason, it is 

often preferable to use the hexadecimal notation: partition the bits of the pattern into 
groups of four (adding zeros on the left if needed) and replace each group by one 
hexadecimal character using the following table: 

 
0000=0, 0001=1, 0010=2, 0011=3, 0100=4, 0101=5, 0110=6, 0111=7 
1000=8, 1001=9, 1010=A, 1011=B, 1100=C, 1101=D, 1110=E, 1111=F 

 
For example, the pattern 101101 is written as 2D in hex. And to indicate that this is 
hex, the prefix 0x (C, Java, and assembly) or 'h (Verilog) is used 

 
11. Save your LabA1 as LabA2.java and modify it so it prints the hex representation of 

the argument. You do this by using the following method in the Integer class: 
 

public static String toHexString(int) 
 
12. Compile your app and run it supplying 205. The output should be 0xCD. It does not 

matter if the hex digits are written in lower or upper case. 
 
13. Note that Java sets aside 32 bits (4 bytes) to represent an int. The higher bits in the 

above examples were suppressed because they were zeros. To expose this, we will 
use a method (also in the Integer class) that reverses (inverts) the binary pattern: 

 
public static int reverse(int) 

 
14. Modify your app so it also outputs (in hex) the reverse representation of the argu-

ment. Run your app with argument 195. What is the output? 
 
15. Note that if the reversal is done at the byte level (rather than the bit level) then the 

answer would be different. Such a reversal (for the 32-bit, or 4-byte size) would turn 
the pattern ABCD into DCBA. Search for a method that performs such a reversal and 
modify your app so it outputs this result in addition to the earlier two. 

 
16. Run your app with argument 195. What is the output?
 
 

LabA3.java 
 
17. Revert back to LabA1 and save it as LabA3. Modify the app so it takes two integers 

via args[0] and args[1]. Call the corresponding integers x and y (we continue to 
assume that the arguments are valid).  Your app should output the values of x and y 
in binary along with the value of z for each of the following four cases:   

 
int z = x & y   // and 
int z = x | y   // or 
int z = x ^ y   // xor 
int z = ~x      // not 

 
These are Java's bitwise operators; i.e. they operate at the bit level. 
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18. Make sure you predict the output of this app before you run it to ensure you under-
stand the underlying operation. What are the predicted outputs if x=205 and y=38?  

 
19. Compile your app and run it. Report your results including x, y, and outputs.
 

LabA4.java 
 
20. Revert back to LabA1 and save it as LabA4. Modify the app so that after it parses the 

integer x, it computes and outputs (in binary) x and z for each of the following cases: 
 

int z = x << 1    // logical left shift 
int z = x >>> 1   // logical right shift 
int z = x >> 1    // arithmetic right shift 

 
These are Java's shift operators. Note that there are two different types of right shifts 
but only one type of left shift. 

 
21. Run the program and supply any positive integer as input. Examine the outputs and 

verify that these shift operators do indeed shift the binary pattern left and right. You 
will not see a difference between logical and arithmetic right shifts at this stage. 

      Report your results.
 
22. Modify your app so it outputs the shifted values in decimal as well as binary. Run it 

several times using a variety of positive arguments and try to discover the arithmetic 
computation that these shifts perform. Report your results.

 
23. Modify your app one last time by changing the shift amount from 1 to 2; e.g. the first 

computation becomes x << 2.  
 

24. Report the binary outputs and verify that they correspond to shifts by two positions. 
 

25. Examine the decimal outputs and generalize the arithmetic interpretation of shifts. 
      Report your findings.

LabA5.java 
 
26. Revert back to LabA1 and save it as LabA5. Modify the app so that after it parses the 

integer x, it computes and outputs the value of bit #10 of x.  It does this using logical 
shifts and the following logic: 

 
int z = x << 21;    // make bit #10 the MSb 
z = z >>> 31;       // make bit #10 the LSb 

 
For example, if the supplied argument were 5000, then the output would be 0, and if 
it were 6000, then the output would be 1. 

 
27. Add the following fragment to LabA5: 
 

int mask = 1024; 
int y = x & mask; 
y = y >> 10; 
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28. The number, 1024, the mask, has the following representation in binary:  
 

0000 0000 0000 0000 0000 0100 0000 0000 
 
Verify that this mask-based approach will also output the state of bit #10; i.e. the 
mask-based y and the shift-based z are the same. 

 
29. The word "mask" is often used to describe something that blocks the view except for 

a hole through which light can pass and one can see. Does the number 1024 behave 
like a mask in this sense? 

 
LabA6.java 

 
30. Revert back to LabA1 and save it as LabA6. Modify the app so that after it parses the 

integer x, it sets bit #10 of x (i.e. makes it 1) and clears bit #11 (i.e. makes it 0).  
 
31. Have you program output x before and after the manipulation in binary so you can 

easily track its progress and debug it if needed. Report your results.
 

LabA7.java 
 
32. Revert back to LabA1 and save it as LabA7. Modify the app so that after it parses the 

integer x, it interchanges (i.e. swaps) bit #10 and bit #20 of x.  
 
33. Have you program output x before and after the manipulation in binary so you can 

easily track its progress and debug it if needed. Report your experiment.
 

LabA8.java 
 
34. Revert back to LabA1 and save it as LabA8. Unlike all the earlier explorations, let us 

supply a negative value such as -5 as argument The output should be: 
 

11111111111111111111111111111011 
 
35. The representation of negative numbers is also positional, and in fact identical to that 

used for non-negative integers, except for one key difference:  the weight of the MSb 
is negative. The above pattern, for example, represents: 

 
-231 + 230 + 229 + 228 + 227 + ... + 23 + 21 + 20 = -5   

 
36. Have the app compute and output the value of: 

 
int z = 1 + ~x; 

 
both in decimal and binary. Run the program for various negative arguments and 
examine the output. What do you observe? Can you explain this observation? 
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• Replicating the MSb of a pattern (aka sign extension) does not change the value of 

the integer it represents. This is obvious if the MSb = 0 but it is also true if it is 1.  
 
• Even though the MSb is not a sign bit per se, it acts as one. If the MSb is 1, the value 

of the integer will work out to be negative. 
 
• Arithmetic right shifts are intended to maintain the division interpretation of logical 

right shifts when the operand is negative. 
 

• This lab is concerned with signed integers, ones that can have a sign. If an integer 
cannot have a sign (such as a memory address) then we call it unsigned and in that 
case the weights of all the bits, including the MSb, would be positive. 

 
• Java’s integer types (byte, short, int, and long) represent integers as signed 

two’s complement numbers using 8, 16, 32, and 64 bits, respectively. 
 

• Java does have an unsigned integer type, char, which uses 16 bits, but because of 
automatic promotion all integer operations end up being signed unless explicitly cast.  

 
• When you approach problems involving bits, it is essential that you think it terms of 

shifts and masks, not numbers or strings. For example, a mask with bit #5 set should 
be constructed using 1 << 5 rather than Math.pow(2, 5). Similarly, the state of a 
given bit should be determined based on logical operations rather than substring 
or indexOf. Relying on numbers or strings is not transferable to other languages 
and can in fact be wrong sometimes, when casting Math.pow(2,31)! 
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