
The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 1

COMPUTERORGANIZATION AND DESIGN
The Hardware/Software Interface

RISC-V
Edition

Chapter 2
Linking and Comparison

These slides are based on the slides by
the authors. The slides doesn’t include all
the material covered in the lecture. The
slides will be explained, modified, and

sometime corrected in the lecture.

Chapter 2 — Instructions: Language of the Computer — 2

Synchronization

 Two processors sharing an area of memory
 P1 writes, then P2 reads

 Data race if P1 and P2 don’t synchronize
 Result depends of order of accesses

 Hardware support required
 Atomic read/write memory operation

 No other access to the location allowed between the
read and write

 Could be a single instruction
 E.g., atomic swap of register ↔ memory

 Or an atomic pair of instructions

§2.11 P
arallelism

 and Instructions: S
ynchronization

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 2

Chapter 2 — Instructions: Language of the Computer — 3

Synchronization in RISC-V
 Load reserved: lr.d rd,(rs1)

 Load from address in rs1 to rd
 Place reservation on memory address

 Store conditional: sc.d rd,(rs1),rs2
 Store from rs2 to address in rs1
 Succeeds if location not changed since the lr.d

 Returns 0 in rd

 Fails if location is changed
 Returns non-zero value in rd

Synchronization in RISC-V
 Example 1: atomic swap (to test/set lock variable)
again: lr.d x10,(x20)

sc.d x11,(x20),x23 // X11 = status

bne x11,x0,again // branch if store failed

addi x23,x10,0 // X23 = loaded value

 Example 2: lock
addi x12,x0,1 // copy locked value

again: lr.d x10,(x20) // read lock

bne x10,x0,again // check if it is 0 yet

sc.d x11,(x20),x12 // attempt to store

bne x11,x0,again // branch if fails

 Unlock:
sd x0,0(x20) // free lock

Chapter 2 — Instructions: Language of the Computer — 4

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 3

Chapter 2 — Instructions: Language of the Computer — 5

Translation and Startup

Many compilers produce
object modules directly

Static linking

§2.12 T
ranslating and S

tarting a P
rogram

Chapter 2 — Instructions: Language of the Computer — 6

Producing an Object Module
 Assembler (or compiler) translates program into

machine instructions
 Provides information for building a complete

program from the pieces
 Header: described contents of object module
 Text segment: translated instructions
 Static data segment: data allocated for the life of the

program
 Relocation info: for contents that depend on absolute

location of loaded program
 Symbol table: global definitions and external refs
 Debug info: for associating with source code

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 4

Chapter 2 — Instructions: Language of the Computer — 7

Linking Object Modules

 Produces an executable image
1. Merges segments

2. Resolve labels (determine their addresses)

3. Patch location-dependent and external refs

 Could leave location dependencies for
fixing by a relocating loader
 But with virtual memory, no need to do this

 Program can be loaded into absolute location
in virtual memory space

Chapter 2 — Instructions: Language of the Computer — 8

Loading a Program

 Load from image file on disk into memory
1. Read header to determine segment sizes

2. Create virtual address space

3. Copy text and initialized data into memory
 Or set page table entries so they can be faulted in

4. Set up arguments on stack

5. Initialize registers (including sp, fp, gp)

6. Jump to startup routine
 Copies arguments to x10, … and calls main

 When main returns, do exit syscall

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 5

Chapter 2 — Instructions: Language of the Computer — 9

Dynamic Linking

 Only link/load library procedure when it is
called
 Requires procedure code to be relocatable

 Avoids image bloat caused by static linking of
all (transitively) referenced libraries

 Automatically picks up new library versions

Chapter 2 — Instructions: Language of the Computer — 10

Lazy Linkage

Indirection table

Stub: Loads routine ID,
Jump to linker/loader

Linker/loader code

Dynamically
mapped code

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 6

Chapter 2 — Instructions: Language of the Computer — 11

Starting Java Applications

Simple portable
instruction set for

the JVM

Interprets
bytecodes

Compiles
bytecodes of
“hot” methods

into native
code for host

machine

MIPS Instructions
 MIPS: commercial predecessor to RISC-V
 Similar basic set of instructions

 32-bit instructions
 32 general purpose registers, register 0 is always 0
 32 floating-point registers
 Memory accessed only by load/store instructions

 Consistent use of addressing modes for all data sizes

 Different conditional branches
 For <, <=, >, >=
 RISC-V: blt, bge, bltu, bgeu
 MIPS: slt, sltu (set less than, result is 0 or 1)

 Then use beq, bne to complete the branch

Chapter 2 — Instructions: Language of the Computer — 12

§2.16 R
eal S

tuff: M
IP

S
 Instructions

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 7

Chapter 2 — Instructions: Language of the Computer — 13

Instruction Encoding

Chapter 2 — Instructions: Language of the Computer — 14

The Intel x86 ISA

 Evolution with backward compatibility
 8080 (1974): 8-bit microprocessor

 Accumulator, plus 3 index-register pairs

 8086 (1978): 16-bit extension to 8080
 Complex instruction set (CISC)

 8087 (1980): floating-point coprocessor
 Adds FP instructions and register stack

 80286 (1982): 24-bit addresses, MMU
 Segmented memory mapping and protection

 80386 (1985): 32-bit extension (now IA-32)
 Additional addressing modes and operations

 Paged memory mapping as well as segments

§2.17 R
eal S

tuff: x86 Instructions

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 8

Chapter 2 — Instructions: Language of the Computer — 15

The Intel x86 ISA
 Further evolution…

 i486 (1989): pipelined, on-chip caches and FPU
 Compatible competitors: AMD, Cyrix, …

 Pentium (1993): superscalar, 64-bit datapath
 Later versions added MMX (Multi-Media eXtension)

instructions
 The infamous FDIV bug

 Pentium Pro (1995), Pentium II (1997)
 New microarchitecture (see Colwell, The Pentium Chronicles)

 Pentium III (1999)
 Added SSE (Streaming SIMD Extensions) and associated

registers

 Pentium 4 (2001)
 New microarchitecture
 Added SSE2 instructions

Chapter 2 — Instructions: Language of the Computer — 16

The Intel x86 ISA
 And further…

 AMD64 (2003): extended architecture to 64 bits
 EM64T – Extended Memory 64 Technology (2004)

 AMD64 adopted by Intel (with refinements)
 Added SSE3 instructions

 Intel Core (2006)
 Added SSE4 instructions, virtual machine support

 AMD64 (announced 2007): SSE5 instructions
 Intel declined to follow, instead…

 Advanced Vector Extension (announced 2008)
 Longer SSE registers, more instructions

 If Intel didn’t extend with compatibility, its
competitors would!
 Technical elegance ≠ market success

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 9

Chapter 2 — Instructions: Language of the Computer — 17

Basic x86 Registers

Chapter 2 — Instructions: Language of the Computer — 18

Basic x86 Addressing Modes

 Two operands per instruction
Source/dest operand Second source operand

Register Register

Register Immediate

Register Memory

Memory Register

Memory Immediate

 Memory addressing modes
 Address in register

 Address = Rbase + displacement

 Address = Rbase + 2scale × Rindex (scale = 0, 1, 2, or 3)

 Address = Rbase + 2scale × Rindex + displacement

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 10

Chapter 2 — Instructions: Language of the Computer — 19

x86 Instruction Encoding

 Variable length
encoding
 Postfix bytes specify

addressing mode

 Prefix bytes modify
operation
 Operand length,

repetition, locking, …

Chapter 2 — Instructions: Language of the Computer — 20

Implementing IA-32

 Complex instruction set makes
implementation difficult
 Hardware translates instructions to simpler

microoperations
 Simple instructions: 1–1

 Complex instructions: 1–many

 Microengine similar to RISC

 Market share makes this economically viable

 Comparable performance to RISC
 Compilers avoid complex instructions

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 11

Other RISC-V Instructions

 Base integer instructions (RV64I)
 Those previously described, plus

 auipc rd, immed // rd = (imm<<12) + pc
 follow by jalr (adds 12-bit immed) for long jump

 slt, sltu, slti, sltui: set less than (like MIPS)

 addw, subw, addiw: 32-bit add/sub

 sllw, srlw, srlw, slliw, srliw, sraiw: 32-bit shift

 32-bit variant: RV32I
 registers are 32-bits wide, 32-bit operations

Chapter 2 — Instructions: Language of the Computer — 21

§2.18 T
he R

est of the R
IS

C
-V

 Instruction S
et

Instruction Set Extensions

 M: integer multiply, divide, remainder

 A: atomic memory operations

 F: single-precision floating point

 D: double-precision floating point

 C: compressed instructions
 16-bit encoding for frequently used

instructions

Chapter 2 — Instructions: Language of the Computer — 22

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 12

Chapter 2 — Instructions: Language of the Computer — 23

Fallacies

 Powerful instruction  higher performance
 Fewer instructions required

 But complex instructions are hard to implement
 May slow down all instructions, including simple ones

 Compilers are good at making fast code from simple
instructions

 Use assembly code for high performance
 But modern compilers are better at dealing with

modern processors

 More lines of code  more errors and less
productivity

§2.19 F
allacies and P

itfalls

Chapter 2 — Instructions: Language of the Computer — 24

Fallacies

 Backward compatibility  instruction set
doesn’t change
 But they do accrete more instructions

x86 instruction set

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 13

Chapter 2 — Instructions: Language of the Computer — 25

Pitfalls

 Sequential words are not at sequential
addresses
 Increment by 4, not by 1!

 Keeping a pointer to an automatic variable
after procedure returns
 e.g., passing pointer back via an argument

 Pointer becomes invalid when stack popped

Chapter 2 — Instructions: Language of the Computer — 26

Concluding Remarks

 Design principles
1. Simplicity favors regularity
2. Smaller is faster
3. Good design demands good compromises

 Make the common case fast
 Layers of software/hardware

 Compiler, assembler, hardware

 RISC-V: typical of RISC ISAs
 c.f. x86

§2.20 C
oncluding R

em
arks

