
The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 1

COMPUTERORGANIZATION AND DESIGN
The Hardware/Software Interface

RISC-V
Edition

Chapter 2
Linking and Comparison

These slides are based on the slides by
the authors. The slides doesn’t include all
the material covered in the lecture. The
slides will be explained, modified, and

sometime corrected in the lecture.

Chapter 2 — Instructions: Language of the Computer — 2

Synchronization

 Two processors sharing an area of memory
 P1 writes, then P2 reads

 Data race if P1 and P2 don’t synchronize
 Result depends of order of accesses

 Hardware support required
 Atomic read/write memory operation

 No other access to the location allowed between the
read and write

 Could be a single instruction
 E.g., atomic swap of register ↔ memory

 Or an atomic pair of instructions

§2.11 P
arallelism

 and Instructions: S
ynchronization

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 2

Chapter 2 — Instructions: Language of the Computer — 3

Synchronization in RISC-V
 Load reserved: lr.d rd,(rs1)

 Load from address in rs1 to rd
 Place reservation on memory address

 Store conditional: sc.d rd,(rs1),rs2
 Store from rs2 to address in rs1
 Succeeds if location not changed since the lr.d

 Returns 0 in rd

 Fails if location is changed
 Returns non-zero value in rd

Synchronization in RISC-V
 Example 1: atomic swap (to test/set lock variable)
again: lr.d x10,(x20)

sc.d x11,(x20),x23 // X11 = status

bne x11,x0,again // branch if store failed

addi x23,x10,0 // X23 = loaded value

 Example 2: lock
addi x12,x0,1 // copy locked value

again: lr.d x10,(x20) // read lock

bne x10,x0,again // check if it is 0 yet

sc.d x11,(x20),x12 // attempt to store

bne x11,x0,again // branch if fails

 Unlock:
sd x0,0(x20) // free lock

Chapter 2 — Instructions: Language of the Computer — 4

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 3

Chapter 2 — Instructions: Language of the Computer — 5

Translation and Startup

Many compilers produce
object modules directly

Static linking

§2.12 T
ranslating and S

tarting a P
rogram

Chapter 2 — Instructions: Language of the Computer — 6

Producing an Object Module
 Assembler (or compiler) translates program into

machine instructions
 Provides information for building a complete

program from the pieces
 Header: described contents of object module
 Text segment: translated instructions
 Static data segment: data allocated for the life of the

program
 Relocation info: for contents that depend on absolute

location of loaded program
 Symbol table: global definitions and external refs
 Debug info: for associating with source code

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 4

Chapter 2 — Instructions: Language of the Computer — 7

Linking Object Modules

 Produces an executable image
1. Merges segments

2. Resolve labels (determine their addresses)

3. Patch location-dependent and external refs

 Could leave location dependencies for
fixing by a relocating loader
 But with virtual memory, no need to do this

 Program can be loaded into absolute location
in virtual memory space

Chapter 2 — Instructions: Language of the Computer — 8

Loading a Program

 Load from image file on disk into memory
1. Read header to determine segment sizes

2. Create virtual address space

3. Copy text and initialized data into memory
 Or set page table entries so they can be faulted in

4. Set up arguments on stack

5. Initialize registers (including sp, fp, gp)

6. Jump to startup routine
 Copies arguments to x10, … and calls main

 When main returns, do exit syscall

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 5

Chapter 2 — Instructions: Language of the Computer — 9

Dynamic Linking

 Only link/load library procedure when it is
called
 Requires procedure code to be relocatable

 Avoids image bloat caused by static linking of
all (transitively) referenced libraries

 Automatically picks up new library versions

Chapter 2 — Instructions: Language of the Computer — 10

Lazy Linkage

Indirection table

Stub: Loads routine ID,
Jump to linker/loader

Linker/loader code

Dynamically
mapped code

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 6

Chapter 2 — Instructions: Language of the Computer — 11

Starting Java Applications

Simple portable
instruction set for

the JVM

Interprets
bytecodes

Compiles
bytecodes of
“hot” methods

into native
code for host

machine

MIPS Instructions
 MIPS: commercial predecessor to RISC-V
 Similar basic set of instructions

 32-bit instructions
 32 general purpose registers, register 0 is always 0
 32 floating-point registers
 Memory accessed only by load/store instructions

 Consistent use of addressing modes for all data sizes

 Different conditional branches
 For <, <=, >, >=
 RISC-V: blt, bge, bltu, bgeu
 MIPS: slt, sltu (set less than, result is 0 or 1)

 Then use beq, bne to complete the branch

Chapter 2 — Instructions: Language of the Computer — 12

§2.16 R
eal S

tuff: M
IP

S
 Instructions

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 7

Chapter 2 — Instructions: Language of the Computer — 13

Instruction Encoding

Chapter 2 — Instructions: Language of the Computer — 14

The Intel x86 ISA

 Evolution with backward compatibility
 8080 (1974): 8-bit microprocessor

 Accumulator, plus 3 index-register pairs

 8086 (1978): 16-bit extension to 8080
 Complex instruction set (CISC)

 8087 (1980): floating-point coprocessor
 Adds FP instructions and register stack

 80286 (1982): 24-bit addresses, MMU
 Segmented memory mapping and protection

 80386 (1985): 32-bit extension (now IA-32)
 Additional addressing modes and operations

 Paged memory mapping as well as segments

§2.17 R
eal S

tuff: x86 Instructions

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 8

Chapter 2 — Instructions: Language of the Computer — 15

The Intel x86 ISA
 Further evolution…

 i486 (1989): pipelined, on-chip caches and FPU
 Compatible competitors: AMD, Cyrix, …

 Pentium (1993): superscalar, 64-bit datapath
 Later versions added MMX (Multi-Media eXtension)

instructions
 The infamous FDIV bug

 Pentium Pro (1995), Pentium II (1997)
 New microarchitecture (see Colwell, The Pentium Chronicles)

 Pentium III (1999)
 Added SSE (Streaming SIMD Extensions) and associated

registers

 Pentium 4 (2001)
 New microarchitecture
 Added SSE2 instructions

Chapter 2 — Instructions: Language of the Computer — 16

The Intel x86 ISA
 And further…

 AMD64 (2003): extended architecture to 64 bits
 EM64T – Extended Memory 64 Technology (2004)

 AMD64 adopted by Intel (with refinements)
 Added SSE3 instructions

 Intel Core (2006)
 Added SSE4 instructions, virtual machine support

 AMD64 (announced 2007): SSE5 instructions
 Intel declined to follow, instead…

 Advanced Vector Extension (announced 2008)
 Longer SSE registers, more instructions

 If Intel didn’t extend with compatibility, its
competitors would!
 Technical elegance ≠ market success

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 9

Chapter 2 — Instructions: Language of the Computer — 17

Basic x86 Registers

Chapter 2 — Instructions: Language of the Computer — 18

Basic x86 Addressing Modes

 Two operands per instruction
Source/dest operand Second source operand

Register Register

Register Immediate

Register Memory

Memory Register

Memory Immediate

 Memory addressing modes
 Address in register

 Address = Rbase + displacement

 Address = Rbase + 2scale × Rindex (scale = 0, 1, 2, or 3)

 Address = Rbase + 2scale × Rindex + displacement

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 10

Chapter 2 — Instructions: Language of the Computer — 19

x86 Instruction Encoding

 Variable length
encoding
 Postfix bytes specify

addressing mode

 Prefix bytes modify
operation
 Operand length,

repetition, locking, …

Chapter 2 — Instructions: Language of the Computer — 20

Implementing IA-32

 Complex instruction set makes
implementation difficult
 Hardware translates instructions to simpler

microoperations
 Simple instructions: 1–1

 Complex instructions: 1–many

 Microengine similar to RISC

 Market share makes this economically viable

 Comparable performance to RISC
 Compilers avoid complex instructions

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 11

Other RISC-V Instructions

 Base integer instructions (RV64I)
 Those previously described, plus

 auipc rd, immed // rd = (imm<<12) + pc
 follow by jalr (adds 12-bit immed) for long jump

 slt, sltu, slti, sltui: set less than (like MIPS)

 addw, subw, addiw: 32-bit add/sub

 sllw, srlw, srlw, slliw, srliw, sraiw: 32-bit shift

 32-bit variant: RV32I
 registers are 32-bits wide, 32-bit operations

Chapter 2 — Instructions: Language of the Computer — 21

§2.18 T
he R

est of the R
IS

C
-V

 Instruction S
et

Instruction Set Extensions

 M: integer multiply, divide, remainder

 A: atomic memory operations

 F: single-precision floating point

 D: double-precision floating point

 C: compressed instructions
 16-bit encoding for frequently used

instructions

Chapter 2 — Instructions: Language of the Computer — 22

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 12

Chapter 2 — Instructions: Language of the Computer — 23

Fallacies

 Powerful instruction higher performance
 Fewer instructions required

 But complex instructions are hard to implement
 May slow down all instructions, including simple ones

 Compilers are good at making fast code from simple
instructions

 Use assembly code for high performance
 But modern compilers are better at dealing with

modern processors

 More lines of code more errors and less
productivity

§2.19 F
allacies and P

itfalls

Chapter 2 — Instructions: Language of the Computer — 24

Fallacies

 Backward compatibility instruction set
doesn’t change
 But they do accrete more instructions

x86 instruction set

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 13

Chapter 2 — Instructions: Language of the Computer — 25

Pitfalls

 Sequential words are not at sequential
addresses
 Increment by 4, not by 1!

 Keeping a pointer to an automatic variable
after procedure returns
 e.g., passing pointer back via an argument

 Pointer becomes invalid when stack popped

Chapter 2 — Instructions: Language of the Computer — 26

Concluding Remarks

 Design principles
1. Simplicity favors regularity
2. Smaller is faster
3. Good design demands good compromises

 Make the common case fast
 Layers of software/hardware

 Compiler, assembler, hardware

 RISC-V: typical of RISC ISAs
 c.f. x86

§2.20 C
oncluding R

em
arks

