
The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 1

Chapter 2 — Instructions: Language of the Computer — 1

Procedure Calling

 Steps required
1. Place parameters in registers x10 to x17

2. Transfer control to procedure

3. Acquire storage for procedure

4. Perform procedure’s operations

5. Place result in register for caller

6. Return to place of call (address in x1)

§2.8 S
upporting P

rocedures in C
om

puter H
ardw

are

Chapter 2 — Instructions: Language of the Computer — 2

Procedure Call Instructions

 Procedure call: jump and link
jal x1, ProcedureLabel

 Address of following instruction put in x1

 Jumps to target address

 Procedure return: jump and link register
jalr x0, 0(x1)

 Like jal, but jumps to 0 + address in x1

 Use x0 as rd (x0 cannot be changed)

 Can also be used for computed jumps
 e.g., for case/switch statements

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 2

Chapter 2 — Instructions: Language of the Computer — 3

Leaf Procedure Example

 C code:
long long int leaf_example (

long long int g, long long int h,
long long int i, long long int j) {

long long int f;
f = (g + h) - (i + j);
return f;

}

 Arguments g, …, j in x10, …, x13

 f in x20

 temporaries x5, x6

 Need to save x5, x6, x20 on stack

 RISC-V code:
leaf_example:

addi sp,sp,-24

sd x5,16(sp)

sd x6,8(sp)

sd x20,0(sp

add x5,x10,x11

add x6,x12,x1

sub x20,x5,x6

addi x10,x20,0

ld x20,0(sp)

ld x6,8(sp)

ld x5,16(sp)

addi sp,sp,24

jalr x0,0(x1)

Chapter 2 — Instructions: Language of the Computer — 4

Leaf Procedure Example

Save x5, x6, x20 on stack

x5 = g + h
x6 = i + j
f = x5 – x6
copy f to return register
Resore x5, x6, x20 from stack

Return to caller

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 3

Local Data on the Stack

Chapter 2 — Instructions: Language of the Computer — 5

Register Usage

 x5 – x7, x28 – x31: temporary registers
 Not preserved by the callee

 x8 – x9, x18 – x27: saved registers
 If used, the callee saves and restores them

Chapter 2 — Instructions: Language of the Computer — 6

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 4

Chapter 2 — Instructions: Language of the Computer — 7

Non-Leaf Procedures

 Procedures that call other procedures

 For nested call, caller needs to save on the
stack:
 Its return address

 Any arguments and temporaries needed after
the call

 Restore from the stack after the call

Chapter 2 — Instructions: Language of the Computer — 8

Non-Leaf Procedure Example

 C code:
long long int fact (long long int n)
{
if (n < 1) return f;
else return n * fact(n - 1);

}

 Argument n in x10

 Result in x10

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 5

 RISC-V code:
fact:

addi sp,sp,-16

sd x1,8(sp)

sd x10,0(sp)

addi x5,x10,-1

bge x5,x0,L1

addi x10,x0,1

addi sp,sp,16

jalr x0,0(x1)

L1: addi x10,x10,-1

jal x1,fact

addi x6,x10,0

ld x10,0(sp)

ld x1,8(sp)

addi sp,sp,16

mul x10,x10,x6

jalr x0,0(x1)

Chapter 2 — Instructions: Language of the Computer — 9

Leaf Procedure Example

Save return address and n on stack

x5 = n - 1

Else, set return value to 1

n = n - 1

if n >= 1, go to L1

call fact(n-1)

Pop stack, don’t bother restoring values

Return

Restore caller’s n
Restore caller’s return address
Pop stack

return n * fact(n-1)

return

move result of fact(n - 1) to x6

Chapter 2 — Instructions: Language of the Computer — 10

Memory Layout
 Text: program code
 Static data: global

variables
 e.g., static variables in C,

constant arrays and strings
 x3 (global pointer)

initialized to address
allowing ±offsets into this
segment

 Dynamic data: heap
 E.g., malloc in C, new in

Java

 Stack: automatic storage

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 6

Chapter 2 — Instructions: Language of the Computer — 11

Local Data on the Stack

 Local data allocated by callee
 e.g., C automatic variables

 Procedure frame (activation record)
 Used by some compilers to manage stack storage

Chapter 2 — Instructions: Language of the Computer — 12

Character Data

 Byte-encoded character sets
 ASCII: 128 characters

 95 graphic, 33 control

 Latin-1: 256 characters
 ASCII, +96 more graphic characters

 Unicode: 32-bit character set
 Used in Java, C++ wide characters, …

 Most of the world’s alphabets, plus symbols

 UTF-8, UTF-16: variable-length encodings

§2.9 C
om

m
unicating w

ith P
eople

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 7

Chapter 2 — Instructions: Language of the Computer — 13

Byte/Halfword/Word Operations

 RISC-V byte/halfword/word load/store
 Load byte/halfword/word: Sign extend to 64 bits in rd

 lb rd, offset(rs1)

 lh rd, offset(rs1)

 lw rd, offset(rs1)

 Load byte/halfword/word unsigned: Zero extend to 64 bits in rd
 lbu rd, offset(rs1)

 lhu rd, offset(rs1)

 lwu rd, offset(rs1)

 Store byte/halfword/word: Store rightmost 8/16/32 bits
 sb rs2, offset(rs1)

 sh rs2, offset(rs1)

 sw rs2, offset(rs1)

Chapter 2 — Instructions: Language of the Computer — 14

String Copy Example

 C code:
 Null-terminated string

void strcpy (char x[], char y[])
{ size_t i;
i = 0;
while ((x[i]=y[i])!='\0')
i += 1;

}

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 8

 RISC-V code:
strcpy:

addi sp,sp,-8 // adjust stack for 1 doubleword
sd x19,0(sp) // push x19
add x19,x0,x0 // i=0

L1: add x5,x19,x10 // x5 = addr of y[i]
lbu x6,0(x5) // x6 = y[i]
add x7,x19,x10 // x7 = addr of x[i]
sb x6,0(x7) // x[i] = y[i]
beq x6,x0,L2 // if y[i] == 0 then exit
addi x19,x19,1 // i = i + 1
jal x0,L1 // next iteration of loop

L2: ld x19,0(sp) // restore saved x19
addi sp,sp,8 // pop 1 doubleword from stack
jalr x0,0(x1) // and return

Chapter 2 — Instructions: Language of the Computer — 15

String Copy Example

 Most constants are small
 12-bit immediate is sufficient

 For the occasional 32-bit constant

lui rd, constant

 Copies 20-bit constant to bits [31:12] of rd

 Extends bit 31 to bits [63:32]

 Clears bits [11:0] of rd to 0

Chapter 2 — Instructions: Language of the Computer — 16

0000 0000 0011 1101 00000000 0000 0000 0000

32-bit Constants

lui x19, 976 // 0x003D0

§2.10 R
IS

C
-V

 A
ddressing for W

ide Im
m

ediates and A
ddressesaddi x19,x19,128 // 0x500

0000 0000 0000 0000 0000 0000 0000

0000 0000 0011 1101 00000000 0000 0000 0000 0000 0000 0000 0000 0101 0000 0000

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 9

Chapter 2 — Instructions: Language of the Computer — 17

Branch Addressing

 Branch instructions specify
 Opcode, two registers, target address

 Most branch targets are near branch
 Forward or backward

 SB format:

 PC-relative addressing
 Target address = PC + immediate × 2

rs2 rs1 funct3 opcode
imm

[10:5]
imm
[4:1]

imm[12] imm[11]

Chapter 2 — Instructions: Language of the Computer — 18

Jump Addressing

 Jump and link (jal) target uses 20-bit
immediate for larger range

 UJ format:

 For long jumps, eg, to 32-bit absolute
address
 lui: load address[31:12] to temp register

 jalr: add address[11:0] and jump to target

rd opcode

7 bits5 bits
imm[11]imm[20]

imm[10:1] imm[19:12]

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 10

RISC-V Addressing Summary

Chapter 2 — Instructions: Language of the Computer — 19

RISC-V Encoding Summary

Chapter 2 — Instructions: Language of the Computer — 20

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 11

Chapter 2 — Instructions: Language of the Computer — 21

C Sort Example

 Illustrates use of assembly instructions
for a C bubble sort function

 Swap procedure (leaf)
void swap(long long int v[],

long long int k)
{
long long int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}

 v in x10, k in x11, temp in x5

§2.13 A
 C

 S
ort E

xam
ple to P

ut It A
ll Together

swap:

slli x6,x11,3 // reg x6 = k * 8

add x6,x10,x6 // reg x6 = v + (k * 8)

ld x5,0(x6) // reg x5 (temp) = v[k]

ld x7,8(x6) // reg x7 = v[k + 1]

sd x7,0(x6) // v[k] = reg x7

sd x5,8(x6) // v[k+1] = reg x5 (temp)

jalr x0,0(x1) // return to calling routine

Chapter 2 — Instructions: Language of the Computer — 22

The Procedure Swap

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 12

Chapter 2 — Instructions: Language of the Computer — 23

The Sort Procedure in C
 Non-leaf (calls swap)

void sort (long long int v[], size_t n)
{

size_t i, j;
for (i = 0; i < n; i += 1) {

for (j = i – 1;
j >= 0 && v[j] > v[j + 1];
j -= 1) {

swap(v,j);
}

}
}

 v in x10, n in x11, i in x19, j in x20

 Skeleton of outer loop:
 for (i = 0; i <n; i += 1) {

li x19,0 // i = 0

for1tst:

bge x19,x11,exit1 // go to exit1 if x19 ≥ x11 (i≥n)

(body of outer for-loop)

addi x19,x19,1 // i += 1

j for1tst // branch to test of outer loop

exit1:

Chapter 2 — Instructions: Language of the Computer — 24

The Outer Loop

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 13

 Skeleton of inner loop:
 for (j = i − 1; j >= 0 && v[j] > v[j + 1]; j − = 1) {

addi x20,x19,-1 // j = i −1

for2tst:

blt x20,x0,exit2 // go to exit2 if X20 < 0 (j < 0)

slli x5,x20,3 // reg x5 = j * 8

add x5,x10,x5 // reg x5 = v + (j * 8)

ld x6,0(x5) // reg x6 = v[j]

ld x7,8(x5) // reg x7 = v[j + 1]

ble x6,x7,exit2 // go to exit2 if x6 ≤ x7

mv x21, x10 // copy parameter x10 into x21

mv x22, x11 // copy parameter x11 into x22

mv x10, x21 // first swap parameter is v

mv x11, x20 // second swap parameter is j

jal x1,swap // call swap

addi x20,x20,-1 // j –= 1

j for2tst // branch to test of inner loop

exit2:

Chapter 2 — Instructions: Language of the Computer — 25

The Inner Loop

 Preserve saved registers:
addi sp,sp,-40 // make room on stack for 5 regs

sd x1,32(sp) // save x1 on stack

sd x22,24(sp) // save x22 on stack

sd x21,16(sp) // save x21 on stack

sd x20,8(sp) // save x20 on stack

sd x19,0(sp) // save x19 on stack

 Restore saved registers:
exit1:

sd x19,0(sp) // restore x19 from stack

sd x20,8(sp) // restore x20 from stack

sd x21,16(sp) // restore x21 from stack

sd x22,24(sp) // restore x22 from stack

sd x1,32(sp) // restore x1 from stack

addi sp,sp, 40 // restore stack pointer

jalr x0,0(x1)

Chapter 2 — Instructions: Language of the Computer — 26

Preserving Registers

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 14

Chapter 2 — Instructions: Language of the Computer — 27

Effect of Compiler Optimization

0

0.5

1

1.5

2

2.5

3

none O1 O2 O3

Relative Performance

0
20000
40000
60000
80000

100000
120000
140000
160000
180000

none O1 O2 O3

Clock Cycles

0

20000

40000

60000

80000

100000

120000

140000

none O1 O2 O3

Instruction count

0

0.5

1

1.5

2

none O1 O2 O3

CPI

Compiled with gcc for Pentium 4 under Linux

Chapter 2 — Instructions: Language of the Computer — 28

Effect of Language and Algorithm

0

0.5

1

1.5

2

2.5

3

C/none C/O1 C/O2 C/O3 Java/int Java/JIT

Bubblesort Relative Performance

0

0.5

1

1.5

2

2.5

C/none C/O1 C/O2 C/O3 Java/int Java/JIT

Quicksort Relative Performance

0

500

1000

1500

2000

2500

3000

C/none C/O1 C/O2 C/O3 Java/int Java/JIT

Quicksort vs. Bubblesort Speedup

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 15

Chapter 2 — Instructions: Language of the Computer — 29

Lessons Learnt

 Instruction count and CPI are not good
performance indicators in isolation

 Compiler optimizations are sensitive to the
algorithm

 Java/JIT compiled code is significantly
faster than JVM interpreted
 Comparable to optimized C in some cases

 Nothing can fix a dumb algorithm!

Chapter 2 — Instructions: Language of the Computer — 30

Arrays vs. Pointers

 Array indexing involves
 Multiplying index by element size

 Adding to array base address

 Pointers correspond directly to memory
addresses
 Can avoid indexing complexity

§2.14 A
rrays versus P

ointers

The University of Adelaide, School of Computer Science 2 October 2017

Chapter 2 — Instructions: Language of the Computer 16

Chapter 2 — Instructions: Language of the Computer — 31

Example: Clearing an Array

clear1(int array[], int size) {
int i;
for (i = 0; i < size; i += 1)
array[i] = 0;

}

clear2(int *array, int size) {
int *p;
for (p = &array[0]; p < &array[size];

p = p + 1)
*p = 0;

}

li x5,0 // i = 0

loop1:

slli x6,x5,3 // x6 = i * 8

add x7,x10,x6 // x7 = address

// of array[i]

sd x0,0(x7) // array[i] = 0

addi x5,x5,1 // i = i + 1

blt x5,x11,loop1 // if (i<size)

// go to loop1

mv x5,x10 // p = address

// of array[0]

slli x6,x11,3 // x6 = size * 8

add x7,x10,x6 // x7 = address

// of array[size]

loop2:

sd x0,0(x5) // Memory[p] = 0

addi x5,x5,8 // p = p + 8

bltu x5,x7,loop2

// if (p<&array[size])

// go to loop2

Chapter 2 — Instructions: Language of the Computer — 32

Comparison of Array vs. Ptr

 Multiply “strength reduced” to shift

 Array version requires shift to be inside
loop
 Part of index calculation for incremented i

 c.f. incrementing pointer

 Compiler can achieve same effect as
manual use of pointers
 Induction variable elimination

 Better to make program clearer and safer

