
The University of Adelaide, School of Computer Science 18 September 2017

Chapter 2 — Instructions: Language of the Computer 1

COMPUTERORGANIZATION AND DESIGN
The Hardware/Software Interface

RISC-V
Edition

Chapter 2
Instructions: Language
of the Computer
These slides are based on the slides by

the authors. The slides doesn’t include all
the material covered in the lecture. The
slides will be explained, modified, and

sometime corrected in the lecture.

Chapter 2 — Instructions: Language of the Computer — 2

Instruction Set

 The repertoire of instructions of a
computer

 Different computers have different
instruction sets
 But with many aspects in common

 Early computers had very simple
instruction sets
 Simplified implementation

 Many modern computers also have simple
instruction sets

§2.1 Introduction

RISC vs. CISC Instruction set

 RISC
 Reduced Instruction Set Computer

 Fixed instruction size

 Simple instructions (load/store)

 CISC
 Complex Instruction Set Computer

 Variable instruction length

 Much more powerful instructions

 Which is better?

Chapter 2 — Instructions: Language of the Computer — 3

The University of Adelaide, School of Computer Science 18 September 2017

Chapter 2 — Instructions: Language of the Computer 2

Chapter 2 — Instructions: Language of the Computer — 4

The RISC-V Instruction Set

 Used as the example throughout the book

 Developed at UC Berkeley as open ISA

 Now managed by the RISC-V Foundation
(riscv.org)

 Typical of many modern ISAs
 See RISC-V Reference Data tear-out card

 Similar ISAs have a large share of embedded
core market
 Applications in consumer electronics, network/storage

equipment, cameras, printers, …

Chapter 2 — Instructions: Language of the Computer — 5

Arithmetic Operations

 Add and subtract, three operands
 Two sources and one destination

add a, b, c // a gets b + c

 All arithmetic operations have this form

 Design Principle 1: Simplicity favours
regularity
 Regularity makes implementation simpler

 Simplicity enables higher performance at
lower cost

§2.2 O
perations of the C

om
pute

r H
ardw

are

Chapter 2 — Instructions: Language of the Computer — 6

Arithmetic Example

 C code:

f = (g + h) - (i + j);

 Compiled RISC-V code:

add t0, g, h // temp t0 = g + h
add t1, i, j // temp t1 = i + j
add f, t0, t1 // f = t0 - t1

The University of Adelaide, School of Computer Science 18 September 2017

Chapter 2 — Instructions: Language of the Computer 3

Chapter 2 — Instructions: Language of the Computer — 7

Register Operands
 Arithmetic instructions use register

operands

 RISC-V has a 32 × 64-bit register file
 Use for frequently accessed data
 64-bit data is called a “doubleword”

 32 x 64-bit general purpose registers x0 to x30

 32-bit data is called a “word”

 Design Principle 2: Smaller is faster
 c.f. main memory: millions of locations

§2.3 O
perands of the C

om
puter H

ardw
are

RISC-V Registers
 x0: the constant value 0

 x1: return address

 x2: stack pointer

 x3: global pointer

 x4: thread pointer

 x5 – x7, x28 – x31: temporaries

 x8: frame pointer

 x9, x18 – x27: saved registers

 x10 – x11: function arguments/results

 x12 – x17: function arguments

Chapter 2 — Instructions: Language of the Computer — 8

Chapter 2 — Instructions: Language of the Computer — 9

Register Operand Example

 C code:
f = (g + h) - (i + j);

 f, …, j in x19, x20, …, x23

 Compiled RISC-V code:
add x5, x20, x21
add x6, x22, x23
sub x19, x5, x6

The University of Adelaide, School of Computer Science 18 September 2017

Chapter 2 — Instructions: Language of the Computer 4

Chapter 2 — Instructions: Language of the Computer — 10

Memory Operands
 Main memory used for composite data

 Arrays, structures, dynamic data
 To apply arithmetic operations

 Load values from memory into registers
 Store result from register to memory

 Memory is byte addressed
 Each address identifies an 8-bit byte

 RISC-V is Little Endian
 Least-significant byte at least address of a word
 c.f. Big Endian: most-significant byte at least address

 RISC-V does not require words to be aligned in
memory
 Unlike some other ISAs

Chapter 2 — Instructions: Language of the Computer — 11

Memory Operand Example

 C code:
A[12] = h + A[8];

 h in x21, base address of A in x22

 Compiled RISC-V code:
 Index 8 requires offset of 64

 8 bytes per doubleword

ld x9, 64(x22) // load double word
add x9, x21, x9
sd x9, 96(x22)

Chapter 2 — Instructions: Language of the Computer — 12

Registers vs. Memory

 Registers are faster to access than
memory

 Operating on memory data requires loads
and stores
 More instructions to be executed

 Compiler must use registers for variables
as much as possible
 Only spill to memory for less frequently used

variables
 Register optimization is important!

The University of Adelaide, School of Computer Science 18 September 2017

Chapter 2 — Instructions: Language of the Computer 5

Chapter 2 — Instructions: Language of the Computer — 13

Immediate Operands

 Constant data specified in an instruction
addi x22, x22, 4

 Make the common case fast
 Small constants are common

 Immediate operand avoids a load instruction

Chapter 2 — Instructions: Language of the Computer — 14

Unsigned Binary Integers

 Given an n-bit number
0

0
1

1
2n

2n
1n

1n 2x2x2x2xx

 Range: 0 to +2n – 1

 Example
 0000 0000 … 0000 10112

= 0 + … + 1×23 + 0×22 +1×21 +1×20

= 0 + … + 8 + 0 + 2 + 1 = 1110

 Using 64 bits: 0 to +18,446,774,073,709,551,615

§2.4 S
ig

ned and U
nsig

ned N
um

bers

Chapter 2 — Instructions: Language of the Computer — 15

2s-Complement Signed Integers

 Given an n-bit number
0

0
1

1
2n

2n
1n

1n 2x2x2x2xx

 Range: –2n – 1 to +2n – 1 – 1

 Example
 1111 1111 … 1111 11002

= –1×231 + 1×230 + … + 1×22 +0×21 +0×20

= –2,147,483,648 + 2,147,483,644 = –410

 Using 64 bits: −9,223,372,036,854,775,808
to 9,223,372,036,854,775,807

The University of Adelaide, School of Computer Science 18 September 2017

Chapter 2 — Instructions: Language of the Computer 6

Chapter 2 — Instructions: Language of the Computer — 16

2s-Complement Signed Integers

 Bit 63 is sign bit
 1 for negative numbers
 0 for non-negative numbers

 –(–2n – 1) can’t be represented
 Non-negative numbers have the same unsigned

and 2s-complement representation
 Some specific numbers

 0: 0000 0000 … 0000
 –1: 1111 1111 … 1111
 Most-negative: 1000 0000 … 0000
 Most-positive: 0111 1111 … 1111

Chapter 2 — Instructions: Language of the Computer — 17

Signed Negation

 Complement and add 1
 Complement means 1 → 0, 0 → 1

x1x

11111...111xx 2

 Example: negate +2
 +2 = 0000 0000 … 0010two

 –2 = 1111 1111 … 1101two + 1
= 1111 1111 … 1110two

Chapter 2 — Instructions: Language of the Computer — 18

Sign Extension
 Representing a number using more bits

 Preserve the numeric value

 Replicate the sign bit to the left
 c.f. unsigned values: extend with 0s

 Examples: 8-bit to 16-bit
 +2: 0000 0010 => 0000 0000 0000 0010
 –2: 1111 1110 => 1111 1111 1111 1110

 In RISC-V instruction set
 lb: sign-extend loaded byte
 lbu: zero-extend loaded byte

The University of Adelaide, School of Computer Science 18 September 2017

Chapter 2 — Instructions: Language of the Computer 7

Chapter 2 — Instructions: Language of the Computer — 19

Representing Instructions

 Instructions are encoded in binary
 Called machine code

 RISC-V instructions
 Encoded as 32-bit instruction words

 Small number of formats encoding operation code
(opcode), register numbers, …

 Regularity!

§2.5 R
epresenting

 Instructions in the C
om

puter

Chapter 2 — Instructions: Language of the Computer — 20

Hexadecimal

 Base 16
 Compact representation of bit strings
 4 bits per hex digit

0 0000 4 0100 8 1000 c 1100

1 0001 5 0101 9 1001 d 1101

2 0010 6 0110 a 1010 e 1110

3 0011 7 0111 b 1011 f 1111

 Example: eca8 6420
 1110 1100 1010 1000 0110 0100 0010 0000

Chapter 2 — Instructions: Language of the Computer — 21

RISC-V R-format Instructions

 Instruction fields
 opcode: operation code

 rd: destination register number

 funct3: 3-bit function code (additional opcode)

 rs1: the first source register number

 rs2: the second source register number

 funct7: 7-bit function code (additional opcode)

funct7 rs2 rs1 rdfunct3 opcode

7 bits 7 bits5 bits 5 bits 5 bits3 bits

The University of Adelaide, School of Computer Science 18 September 2017

Chapter 2 — Instructions: Language of the Computer 8

Chapter 2 — Instructions: Language of the Computer — 22

R-format Example

add x9,x20,x21

0000 0001 0101 1010 0000 0100 1011 0011two =

015A04B316

funct7 rs2 rs1 rdfunct3 opcode

7 bits 7 bits5 bits 5 bits 5 bits3 bits

0 21 20 90 51

0000000 10101 10100 01001000 0110011

Chapter 2 — Instructions: Language of the Computer — 23

RISC-V I-format Instructions

 Immediate arithmetic and load instructions
 rs1: source or base address register number
 immediate: constant operand, or offset added to base address

 2s-complement, sign extended

 Design Principle 3: Good design demands good
compromises
 Different formats complicate decoding, but allow 32-bit

instructions uniformly
 Keep formats as similar as possible

immediate rs1 rdfunct3 opcode

12 bits 7 bits5 bits 5 bits3 bits

Chapter 2 — Instructions: Language of the Computer — 24

RISC_V I-format Example

ld x9,64(x3)

0000 0001 0101 1010 0000 0100 1011 0011two =

015A04B316

040 3 93 3

000001000000 00011 01001011 0000011

Imm[11:15] rs2 rs1 Imm[4:1|11]funct3 opcode

7 bits 7 bits5 bits 5 bits 5 bits3 bits

The University of Adelaide, School of Computer Science 18 September 2017

Chapter 2 — Instructions: Language of the Computer 9

Chapter 2 — Instructions: Language of the Computer — 25

RISC-V S-format Instructions

 Different immediate format for store instructions
 rs1: base address register number
 rs2: source operand register number
 immediate: offset added to base address

 Split so that rs1 and rs2 fields always in the same place

rs2 rs1 funct3 opcode

7 bits 7 bits5 bits 5 bits 5 bits3 bits

imm[11:5] imm[4:0]

Chapter 2 — Instructions: Language of the Computer — 26

RISC-V S-format Instructions

rs2 rs1 funct3 opcode

7 bits 7 bits5 bits 5 bits 5 bits3 bits

imm[11:5] imm[4:0]

sd x10,80(x2)

2 10 2 93 51

0000010 01010 00010 10000011 0100011

0000010 10000 =0x050 =80

RISC-V S-Format Instructions

Chapter 2 — Instructions: Language of the Computer — 27

rs2 rs1 funct3 opcode

7 bits 7 bits5 bits 5 bits 5 bits3 bits

imm[11:5] imm[4:0]

sd x10,80(x2)

0000010 01010

7 bits 7 bits5 bits 5 bits 5 bits3 bits

rs2 rs1 funct3 opcode

7 bits 7 bits5 bits 5 bits 5 bits3 bits

The University of Adelaide, School of Computer Science 18 September 2017

Chapter 2 — Instructions: Language of the Computer 10

Chapter 2 — Instructions: Language of the Computer — 28

Stored Program Computers
 Instructions represented in

binary, just like data
 Instructions and data stored

in memory
 Programs can operate on

programs
 e.g., compilers, linkers, …

 Binary compatibility allows
compiled programs to work
on different computers
 Standardized ISAs

The BIG Picture

Chapter 2 — Instructions: Language of the Computer — 29

Logical Operations

 Instructions for bitwise manipulation
Operation C Java RISC-V

Shift left << << slli

Shift right >> >>> srli

Bit-by-bit AND & & and, andi

Bit-by-bit OR | | or, ori

Bit-by-bit XOR ^ ^ xor, xori

Bit-by-bit NOT ~ ~

 Useful for extracting and inserting
groups of bits in a word

§2.6 Log
ical O

perations

Chapter 2 — Instructions: Language of the Computer — 30

Shift Operations

 immed: how many positions to shift
 Shift left logical

 Shift left and fill with 0 bits
 slli by i bits multiplies by 2i

 Shift right logical
 Shift right and fill with 0 bits
 srli by i bits divides by 2i (unsigned only)

rs1 rdfunct3 opcode

6 bits 7 bits5 bits 5 bits3 bits

funct6 immed

6 bits

The University of Adelaide, School of Computer Science 18 September 2017

Chapter 2 — Instructions: Language of the Computer 11

Chapter 2 — Instructions: Language of the Computer — 31

AND Operations

 Useful to mask bits in a word
 Select some bits, clear others to 0

and x9,x10,x11

00000000 00000000 00000000 00000000 00000000 00000000 00001101 11000000x10

x11

x9

00000000 00000000 00000000 00000000 00000000 00000000 00111100 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00001100 00000000

Chapter 2 — Instructions: Language of the Computer — 32

OR Operations

 Useful to include bits in a word
 Set some bits to 1, leave others unchanged

or x9,x10,x11

00000000 00000000 00000000 00000000 00000000 00000000 00001101 11000000x10

x11

x9

00000000 00000000 00000000 00000000 00000000 00000000 00111100 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00111101 11000000

Chapter 2 — Instructions: Language of the Computer — 33

XOR Operations

 Differencing operation
 Set some bits to 1, leave others unchanged

xor x9,x10,x12 // NOT operation

00000000 00000000 00000000 00000000 00000000 00000000 00001101 11000000x10

x12

x9

11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111

11111111 11111111 11111111 11111111 11111111 11111111 11110010 00111111

