
\qquad

Branch Prediction

- Dynamic scheduling deals with data dependence improving, the limiting factor is the control \qquad dependence.
- Branch prediction is important for processors \qquad that maintains a CPI of 1 , but it is crucial for processors who tries to issue more than one \qquad instruction per cycle (CPI < 1).
- We have already studied some techniques (delayed branch, predict not taken), but these do not depend on the dynamic behavior of the code.

	Branch History Table
- A small memory indexed by the lower portion of	
the address of the branch instruction.	
- The memory contains only 1-bit, to predict taken	
or untaken	
- If the prediction is incorrect, the prediction bit is	
inverted.	
- In a loop, it mispredicts twice	
- End of loop case, when it exits instead of looping as	
before	
- First time through loop on next time through code,	
when it predicts exit instead of looping	

\qquad
\qquad
\qquad
\qquad
\qquad before
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

2-bit Predictor

- 4096 entries 2-bit predictor miss rate \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Correlating Branch Predictors

B1	DSUBUI R3, R1,			
	if ($\mathrm{aa}==2$)	BNEZ	R3, L1	; b1 (aa!=2)
	aa=0;	DADD	R1, R0, R0	; $\mathrm{aa}==0$
B2	If ($b \mathbf{b}==2$) L1:	DSUBuI	R3, R1, \#2	
	$\mathbf{b b}=\mathbf{0} \text {; }$	BNEZ	R3, L2	; b2 (bb!=2)
B3	2 :	DSUBU	R2, R0, R0	; bb==0
		EEQ	R3, L3	; b3 (aa==bb)

If the condition is true $\rightarrow(\mathrm{B} 1, \mathrm{~B} 2)$ branch NOT TAKEN
If the condition is true \rightarrow B3 NOT taken
If B1 and B2 both NOT TAKEN B3 \rightarrow TAKEN
There is a correlation between B3 and both B1 and B2
M< Copyighte 2012, Elsevier Inc. All rights reserved.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Correlating Branch Predictors

- Correlating predictors (two-level predictors) use the behavior of other branches to make prediction.
- Simplest (1-bit) has 2 predictions, one if the last \qquad branch is take, the second is when the last branch is not taken
- The prediction is on the form NT/T

```
M< Copyrigto 2012, Elsevere In. .all rghts reseved._
```

\qquad

\qquad
\qquad
\qquad
\qquad
0 T/NT $\sqrt{ }$ NT T/NT NT/T $\sqrt{ }$ NT NT/T

0 T/NT $\sqrt{ }$ NT T/NT NT/T $\sqrt{ }$ NT NT/T
Misprediction on first try

Copyright \odot 2012, Elsevier Inc. All rights reserved.
52

Global Predictor

- Take for example 10 bits of the branch PC
- Take 4 bits of global branch history \qquad
- Access 2^{14} entry table
- Or, you could take the 14 bits of PC XORED with 14 bits of branch history (hashing) to access the same table \qquad
- Or any combination
\qquad
\qquad

\qquad
- The 1-bit predictor is called $(1,1)$ predictor.
- It uses one bit for history (last branch), to choose among two (2^{1}) 1-bit branch predictors.
- In general a predictor could me (m, n) predictor.
- It uses the last m branch to choose among 2^{m} \qquad
\qquad
\qquad
\qquad
M< Copyighte 2012, Elsevere Inc. All inghs reseseed. $\quad{ }_{55}$ \qquad

$(2,2)$ Correlating Predictors

$(2,2)$ predictor

- Behavior of recent branches select between four predictions of next branch, updating jus that prediction

Branch Prediction

- Basic 2-bit predictor:
- For each branch
- Predict taken or not taken
- If the prediction is wrong two consecutive times, change prediction
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Correlating predictor

- Multiple 2-bit predictors for each branch
- One for each possible combination of outcomes of preceding n branches
- Local predictor:
- Multiple 2-bit predictors for each branch
. One for each possible combination of outcomes for the last n occurrences of this branch

Copyright © 2012, Elsevier Inc. All rights reserved.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Tournament Predictor

- Tournament predictor:
- Combine correlating predictor with local predictor
- A selector is sued to decide which one of these to use
- The selector could be similar to a 2-bit predictor
- A saturating 2-bit binary counter with 2 outcomes \qquad P1/P2

Copyrighte $\begin{gathered}\text { 2012, Elsevier Inc. All rights reserved. }\end{gathered}$

Alpha 21264 Branch Predictor

- Tournament predictor using, 4K 2-bit counters indexed by local branch address. \qquad
- Global predictor
- 4 K entries index by history of last 12 branches ($2^{12}=$
-4K)
- Each entry is a standard 2 -bit predictor
- Local predictor
- Local history table: 1024 10-bit entries recording last 10 branches, index by branch address
- The pattern of the last 10 occurrences of that particular branch used to index table of 1 K entries with 3-bit saturating counters
\qquad
\qquad
\qquad
\qquad
M< copyightit 2012, Elsevere inc. Al ights resesered. \qquad

Branch Target Buffer

- Prediction tells us if the branch is taken or not.
- If taken, to where? Target address
- Branch target buffer tells us where (based on the PC , or parts of the PC).
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

