
1Copyright © 2012, Elsevier Inc. All rights reserved.

Chapter 3

Instruction-Level Parallelism
and Its Exploitation

Computer Architecture
A Quantitative Approach, Fifth Edition

2

Static vs. Dynamic Scheduling
 Dynamic Scheduling

 Fast
 Requires complex hardware
 More power consumption
 May result in a slower clock

 Static Scheduling
 Done in S/W (compiler)
 Maybe not as fast
 Simpler processor design (less complex)

Copyright © 2012, Elsevier Inc. All rights reserved.

3

Dynamic Scheduling
 In Simple pipelines, instructions are issued in

order.
 If an instruction stalls, all instructions after it are

stalled too (could be O.K. to execute).
 DIV.D F0,F2,F4
 ADD.D F10,F0,F8
 SUB.D F12,F8,F14

Copyright © 2012, Elsevier Inc. All rights reserved.

4Copyright © 2012, Elsevier Inc. All rights reserved.

Dynamic Scheduling
 Rearrange order of instructions to reduce stalls

while maintaining data flow

 Advantages:
 Compiler doesn’t need to have knowledge of

microarchitecture
 Handles cases where dependencies are unknown at

compile time

 Disadvantage:
 Substantial increase in hardware complexity
 Complicates exceptions

B
ranch P

rediction

5Copyright © 2012, Elsevier Inc. All rights reserved.

Dynamic Scheduling
 Rearrange order of instructions to reduce stalls

while maintaining data flow
 Instructions are issued in program order
 But, the instruction begins execution as soon as

its operand are ready
 Out of order execution out of order completion
 DIV.D F0,F2,F4
 ADD.D F6,F0,F8
 SUB.D F8,F10,F14
 MUL.D F6,F10,F8

B
ranch P

rediction

Antidependence
Output Dependence

6Copyright © 2012, Elsevier Inc. All rights reserved.

Dynamic Scheduling
 To allow dynamic scheduling, split the ID stage

in the simple MIPS pipeline into 2 stages
 Issue: Decode and check for structural hazards
 Read operand: wait for data hazard read operand

 Instruction fetch stage before issue, and
execution starts after read operand.

 Instructions pass through the issue stage in
order, they can be delayed or pass each other at
the read operand stage.

B
ranch P

rediction

7Copyright © 2012, Elsevier Inc. All rights reserved.

Dynamic Scheduling
 Major complication for exception handling.
 Must preserve the exception behavior as if the

instructions are executed in the program order.
 May delay notification until the processor knows

the instruction is the next one completed.
 Imprecise exception may occur

 Later instructions (in program order) may have been
completed already.

 Earlier instructions may have not been completed

B
ranch P

rediction

8Copyright © 2012, Elsevier Inc. All rights reserved.

Register Renaming
 Example:

DIV.D F0,F2,F4
ADD.D F6,F0,F8
S.D F6,0(R1)
SUB.D F8,F10,F14
MUL.D F6,F10,F8

+ name dependence with F6

B
ranch P

rediction

antidependence

antidependence

9Copyright © 2012, Elsevier Inc. All rights reserved.

Register Renaming
 Example:

 Now only RAW hazards remain, which can be strictly
ordered

B
ranch P

rediction

DIV.D F0,F2,F4
ADD.D F6,F0,F8
S.D F6,0(R1)
SUB.D F8,F10,F14
MUL.D F6,F10,F8

DIV.D F0,F2,F4
ADD.D S,F0,F8
S.D S,0(R1)
SUB.D T,F10,F14
MUL.D F6,F10,T

10Copyright © 2012, Elsevier Inc. All rights reserved.

Register Renaming
 Register renaming is provided by reservation stations

(RS)
 Contains:

 The instruction
 Buffered operand values (when available)
 Reservation station number of instruction providing the

operand values
 RS fetches and buffers an operand as soon as it becomes

available (not necessarily involving register file)
 Pending instructions designate the RS to which they will send

their output
 Result values broadcast on a result bus, called the common data bus (CDB)

 Only the last output updates the register file
 As instructions are issued, the register specifiers are renamed

with the reservation station
 May be more reservation stations than registers

B
ranch P

rediction

11Copyright © 2012, Elsevier Inc. All rights reserved.

Tomasulo’s Algorithm
 Load and store buffers

 Contain data and addresses, act like reservation
stations

 Top-level design:

B
ranch P

rediction

12Copyright © 2012, Elsevier Inc. All rights reserved.

Tomasulo’s Algorithm
 Three Steps:

 Issue
 Get next instruction from FIFO queue
 If available RS, issue the instruction to the RS with operand values if

available
 If no RS is available, stall the instruction issue

 Execute
 When operand becomes available, store it in any reservation

stations waiting for it
 When all operands are ready, issue the instruction
 Loads and store maintained in program order through effective

address
 No instruction allowed to initiate execution until all branches that

proceed it in program order have completed
 Write result

 Write result on CDB into reservation stations and store buffers
 (Stores must wait until address and value are received)

B
ranch P

rediction

13

Tomasulo’s Algorithm
Op: Operation to perform in the unit (e.g., + or –)

Vj, Vk: Value of Source operands
 Store buffers has V field, result to be stored

Qj, Qk: Reservation stations producing source registers
(value to be written)
 Note: Qj,Qk=0 ready
 Store buffers only have Qj for RS producing result

A: Used to hold info for the load store (initially immediate,
then effective address)

Busy: Indicates reservation station or FU is busy
Register result status— Qi indicates which functional unit
will write each register, 0 means no write to this register

Copyright © 2012, Elsevier Inc. All rights reserved.

14Copyright © 2012, Elsevier Inc. All rights reserved.

Example
B

ranch P
rediction

15Copyright © 2012, Elsevier Inc. All rights reserved.

Dealing with WAR
B

ranch P
redictionThe processor issues both DIV and ADD

although there is a WAR hazard.
If F6 is ready when DIV is issued, its value is
read and stored in the RS (ADD may change it
that is O.K.)
If not ready, RS will read it from the FU
producing it, again ADD may change F6 since
we will read it from the FU not F6

16Copyright © 2012, Elsevier Inc. All rights reserved.

Instruction status: Exec Write
Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 Load1 No
LD F2 45+ R3 Load2 No
MULTD F0 F2 F4 Load3 No
SUBD F8 F6 F2
DIVD F10 F0 F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No
Mult2 No

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

0 FU

Clock cycle
counter

FU count
down

Instruction stream

3 Load/Buffers

3 FP Adder R.S.
2 FP Mult R.S.

17Copyright © 2012, Elsevier Inc. All rights reserved.

Instruction status: Exec Write
Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 Load1 Yes 34+R2
LD F2 45+ R3 Load2 No
MULTD F0 F2 F4 Load3 No
SUBD F8 F6 F2
DIVD F10 F0 F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No
Mult2 No

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

1 FU Load1

18Copyright © 2012, Elsevier Inc. All rights reserved.
CSE4201

Instruction status: Exec Write
Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 Load1 Yes 34+R2
LD F2 45+ R3 2 Load2 Yes 45+R3
MULTD F0 F2 F4 Load3 No
SUBD F8 F6 F2
DIVD F10 F0 F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No
Mult2 No

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

2 FU Load2 Load1

Note: Can have multiple loads outstanding

19Copyright © 2012, Elsevier Inc. All rights reserved.

Instruction status: Exec Write
Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 Load1 Yes 34+R2
LD F2 45+ R3 2 Load2 Yes 45+R3
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2
DIVD F10 F0 F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 Yes MULTD R(F4) Load2
Mult2 No

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

3 FU Mult1 Load2 Load1

• Note: registers names are removed (“renamed”) in Reservation
Stations; MULT issued

• Load1 completing; who is waiting for Load1?

20Copyright © 2012, Elsevier Inc. All rights reserved.

Instruction status: Exec Write
Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 Load2 Yes 45+R3
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4
DIVD F10 F0 F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 Yes SUBD M(A1) Load2
Add2 No
Add3 No
Mult1 Yes MULTD R(F4) Load2
Mult2 No

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

4 FU Mult1 Load2 M(A1) Add1

• Load2 completing; what is waiting for Load2?

21Copyright © 2012, Elsevier Inc. All rights reserved.

Instruction status: Exec Write
Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4
DIVD F10 F0 F6 5
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

2 Add1 Yes SUBD M(A1) M(A2)
Add2 No
Add3 No

10 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

5 FU Mult1 M(A2) M(A1) Add1 Mult2

• Timer starts down for Add1, Mult1

22Copyright © 2012, Elsevier Inc. All rights reserved.

Instruction status: Exec Write
Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

1 Add1 Yes SUBD M(A1) M(A2)
Add2 Yes ADDD M(A2) Add1
Add3 No

9 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

6 FU Mult1 M(A2) Add2 Add1 Mult2

• Issue ADDD here despite name dependency on F6?

23Copyright © 2012, Elsevier Inc. All rights reserved.

Instruction status: Exec Write
Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

0 Add1 Yes SUBD M(A1) M(A2)
Add2 Yes ADDD M(A2) Add1
Add3 No

8 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

7 FU Mult1 M(A2) Add2 Add1 Mult2

• Add1 (SUBD) completing; what is waiting for it?

waiting

24Copyright © 2012, Elsevier Inc. All rights reserved.

Instruction status: Exec Write
Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
2 Add2 Yes ADDD (M-M) M(A2)

Add3 No
7 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

8 FU Mult1 M(A2) Add2 (M-M) Mult2

25Copyright © 2012, Elsevier Inc. All rights reserved.

26Copyright © 2012, Elsevier Inc. All rights reserved.

Instruction status: Exec Write
Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
0 Add2 Yes ADDD (M-M) M(A2)

Add3 No
5 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

10 FU Mult1 M(A2) Add2 (M-M) Mult2

• Add2 (ADDD) completing; what is waiting for it?

27Copyright © 2012, Elsevier Inc. All rights reserved.

CSE4201

Instruction status: Exec Write
Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No

4 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

11 FU Mult1 M(A2) (M-M+M(M-M) Mult2

• Write result of ADDD here?
• All quick instructions complete in this cycle!

28Copyright © 2012, Elsevier Inc. All rights reserved.

29Copyright © 2012, Elsevier Inc. All rights reserved.

30Copyright © 2012, Elsevier Inc. All rights reserved.

31Copyright © 2012, Elsevier Inc. All rights reserved.

Instruction status: Exec Write
Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 15 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No

0 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

15 FU Mult1 M(A2) (M-M+M(M-M) Mult2

• Mult1 (MULTD) completing; who is waiting for it?

32Copyright © 2012, Elsevier Inc. All rights reserved.

Instruction status: Exec Write
Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 15 16 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No

40 Mult2 Yes DIVD M*F4 M(A1)

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

16 FU M*F4 M(A2) (M-M+M(M-M) Mult2

• Just waiting for Mult2 (DIVD) to complete

33Copyright © 2012, Elsevier Inc. All rights reserved.

34Copyright © 2012, Elsevier Inc. All rights reserved.

35Copyright © 2012, Elsevier Inc. All rights reserved.

Instruction status: Exec Write
Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 15 16 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5 56
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No

0 Mult2 Yes DIVD M*F4 M(A1)

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

56 FU M*F4 M(A2) (M-M+M(M-M) Mult2

36Copyright © 2012, Elsevier Inc. All rights reserved.

Instruction status: Exec Write
Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 15 16 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5 56 57
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No
Mult2 Yes DIVD M*F4 M(A1)

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

56 FU M*F4 M(A2) (M-M+M(M-M) Result

• Once again: In-order issue, out-of-order execution and
out-of-order completion.

37

Tomasulo’s Algorithm
 Load and stores could be done out of order

provided they access different memory locations.
 If they access same location, must preserve

order (WAR, RAW, or WAW).
 If address calculation is done in program order,

load/store can check if any uncompleted
load/store share the same address

 Either wait or forward if possible.

Copyright © 2012, Elsevier Inc. All rights reserved.

38Copyright © 2012, Elsevier Inc. All rights reserved.

Hardware-Based Speculation
 Execute instructions along predicted execution

paths but only commit the results if prediction
was correct

 Instruction commit: allowing an instruction to
update the register file when instruction is no
longer speculative

 Need an additional piece of hardware to prevent
any irrevocable action until an instruction
commits

 Need to separate executing the instruction to
pass data to other instructions from completing
(performing operations that can not be undone)

B
ranch P

rediction

39Copyright © 2012, Elsevier Inc. All rights reserved.

Reorder Buffer
 Register values and memory values are not

written until an instruction commits
 On misprediction:

 Speculated entries in ROB are cleared

 Exceptions:
 Not recognized until it is ready to commit

B
ranch P

rediction

40Copyright © 2012, Elsevier Inc. All rights reserved.

Reorder Buffer
 Reorder buffer – holds the result of instruction

between completion and commit (and supply
them to any instruction who needs them just like
the RS in Tomasulo’s)

 Four fields:
 Instruction type: branch/store/register
 Destination field: register number or memory address
 Value field: output value
 Ready field: completed execution?

 Modify reservation stations:
 Operand source is now reorder buffer instead of

functional unit (results are tagged with ROB entry #)

B
ranch P

rediction

41Copyright © 2012, Elsevier Inc. All rights reserved.

Reorder Buffer
 Register values and memory values are not

written until an instruction commits
 On misprediction:

 Speculated entries in ROB are cleared

 Exceptions:
 Not recognized until it is ready to commit

 4 stages
 Issue
 Execute
 Write Result
 Commit

B
ranch P

rediction

42

Reorder Buffer
 Issue

 If empty RS and ROB entry Issue; else stall
 Send operands to RS if available in registers or ROB
 The number of the ROB entry allocated to instruction

is sent to RS to tag the results with
 If operands are not available yet, the ROB entry is

sent to the RS to wait for results on the CDB

Copyright © 2012, Elsevier Inc. All rights reserved.

43

Reorder Buffer
 Execute

 If one or more operands are not available, monitor the
CDB.

 When the result is broadcast on the CDB (we know
that from the ROB entry tag) copy it

 When all operands are ready, start execution
 Write Result

 When execution is completed, broadcast the result on
the CDB tagged with ROB entry #

 Results are copied to ROB entry and all waiting RS
 Execute out of order, commit in order.

Copyright © 2012, Elsevier Inc. All rights reserved.

44

Reorder buffer
 When an instruction reaches the head of the

ROB and the result is ready in the buffer,
 If ALU op write it to the register file and remove

instruction from ROB
 If the instruction is a store, write it to the memory and

remove the instruction from the ROB
 If the instruction is a branch, if prediction is correct,

remove it from the ROB. If misprediction flush the
ROB and start from the correct successor.

Copyright © 2012, Elsevier Inc. All rights reserved.

45Copyright © 2012, Elsevier Inc. All rights reserved.

D
ynam

ic S
cheduling, M

ultiple Issue, and S
peculation

Overview of Design

46Copyright © 2012, Elsevier Inc. All rights reserved.

Multiple Issue and Static Scheduling

 To achieve CPI < 1, need to complete multiple
instructions per clock

 Solutions:
 Statically scheduled superscalar processors
 VLIW (very long instruction word) processors
 dynamically scheduled superscalar processors

M
ultiple Issue and S

tatic S
cheduling

47Copyright © 2012, Elsevier Inc. All rights reserved.

Multiple Issue
M

ultiple Issue and S
tatic S

cheduling

48Copyright © 2012, Elsevier Inc. All rights reserved.

VLIW Processors

 Package multiple operations into one instruction

 Example VLIW processor:
 One integer instruction (or branch)
 Two independent floating-point operations
 Two independent memory references

 Must be enough parallelism in code to fill the
available slots

M
ultiple Issue and S

tatic S
cheduling

49Copyright © 2012, Elsevier Inc. All rights reserved.

VLIW Processors

 Disadvantages:
 Statically finding parallelism
 Code size
 No hazard detection hardware
 Binary code compatibility

M
ultiple Issue and S

tatic S
cheduling

50Copyright © 2012, Elsevier Inc. All rights reserved.

VLIW Processors

 Package multiple operations into one instruction

 Example VLIW processor:
 One integer instruction (or branch)
 Two independent floating-point operations
 Two independent memory references

 Must be enough parallelism in the code to fill the
available slots

M
ultiple Issue and S

tatic S
cheduling

51Copyright © 2012, Elsevier Inc. All rights reserved.

VLIW Processors

 Disadvantages:
 Statically finding parallelism
 Code size
 No hazard detection hardware
 Binary code compatibility

M
ultiple Issue and S

tatic S
cheduling

52

VLIW Example
 Source instruction Instruction using result Latency

 FP ALU OP FP ALU OP 3

 FP ALU OP Store double 2

 Load double FP ALU OP 1

 Load Double Store double 0

Copyright © 2012, Elsevier Inc. All rights reserved.

For (I=1000;I>0;I++)

x[I]=x[I]+s;

Loop: L.D F0,0(R1)
ADD.D F4,F0,F2
S.D 0(R1),F4
DADDUI R1,R1,#-8
BNE R 1,R2,Loop

53

VLIW Example
 Assume that w can schedule 2 memory

operations, 2 FP operations, and one integer or
branch

Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch
LD F0,0(R1) LD F6,-8(R1) 1

LD F10,-16(R1) LD F14,-24(R1) 2

LD F18,-32(R1) LD F22,-40(R1) ADDD F4,F0,F2 ADDD F8,F6,F2 3

LD F26,-48(R1) ADDD F12,F10,F2 ADDD F16,F14,F2 4

ADDD F20,F18,F2 ADDD F24,F22,F2 5

SD 0(R1),F4 SD -8(R1),F8 ADDD F28,F26,F2 6

SD -16(R1),F12 SD -24(R1),F16 DADD R1,R1,#-56 7

SD 24(R1),F20 SD 16(R1),F24 8

SD 8(R1),F28 BNEZ R1,LOOP 9

54Copyright © 2012, Elsevier Inc. All rights reserved.

Dynamic Scheduling, Multiple Issue, and Speculation

 Modern microarchitectures:
 Dynamic scheduling + multiple issue + speculation

 Two approaches:
 Assign reservation stations and update pipeline

control table in half clock cycles
 Only supports 2 instructions/clock

 Design logic to handle any possible dependencies
between the instructions

 Hybrid approaches

 Issue logic can become bottleneck

D
ynam

ic S
cheduling, M

ultiple Issue, and S
peculation

55Copyright © 2012, Elsevier Inc. All rights reserved.

 Limit the number of instructions of a given class
that can be issued in a “bundle”
 I.e. on FP, one integer, one load, one store

 Examine all the dependencies amoung the
instructions in the bundle

 If dependencies exist in bundle, encode them in
reservation stations

 Also need multiple completion/commit

D
ynam

ic S
cheduling, M

ultiple Issue, and S
peculation

Multiple Issue

56Copyright © 2012, Elsevier Inc. All rights reserved.

Loop: LD R2,0(R1) ;R2=array element
DADDIU R2,R2,#1 ;increment R2
SD R2,0(R1) ;store result
DADDIU R1,R1,#8 ;increment pointer
BNE R2,R3,LOOP ;branch if not last element

D
ynam

ic S
cheduling, M

ultiple Issue, and S
peculation

Example

57Copyright © 2012, Elsevier Inc. All rights reserved.

D
ynam

ic S
cheduling, M

ultiple Issue, and S
peculation

Example (No Speculation)

58Copyright © 2012, Elsevier Inc. All rights reserved.

D
ynam

ic S
cheduling, M

ultiple Issue, and S
peculation

Example

59Copyright © 2012, Elsevier Inc. All rights reserved.

 Need high instruction bandwidth!
 Branch-Target buffers

 Next PC prediction buffer, indexed by current PC

A
dv. Techniques for Instruction D

elivery and S
peculation

Branch-Target Buffer

60Copyright © 2012, Elsevier Inc. All rights reserved.

 Optimization:
 Larger branch-target buffer
 Add target instruction into buffer to deal with longer

decoding time required by larger buffer
 “Branch folding”

A
dv. Techniques for Instruction D

elivery and S
peculation

Branch Folding

61Copyright © 2012, Elsevier Inc. All rights reserved.

 Most unconditional branches come from
function returns

 The same procedure can be called from
multiple sites
 Causes the buffer to potentially forget about the

return address from previous calls
 Create return address buffer organized as a

stack

A
dv. Techniques for Instruction D

elivery and S
peculation

Return Address Predictor

62Copyright © 2012, Elsevier Inc. All rights reserved.

 Design monolithic unit that performs:
 Branch prediction
 Instruction prefetch

 Fetch ahead

 Instruction memory access and buffering
 Deal with crossing cache lines

A
dv. Techniques for Instruction D

elivery and S
peculation

Integrated Instruction Fetch Unit

63Copyright © 2012, Elsevier Inc. All rights reserved.

 Register renaming vs. reorder buffers
 Instead of virtual registers from reservation stations and

reorder buffer, create a single register pool
 Contains visible registers and virtual registers

 Use hardware-based map to rename registers during issue
 WAW and WAR hazards are avoided
 Speculation recovery occurs by copying during commit
 Still need a ROB-like queue to update table in order
 Simplifies commit:

 Record that mapping between architectural register and physical register
is no longer speculative

 Free up physical register used to hold older value
 In other words: SWAP physical registers on commit

 Physical register de-allocation is more difficult

A
dv. Techniques for Instruction D

elivery and S
peculation

Register Renaming

64Copyright © 2012, Elsevier Inc. All rights reserved.

 Combining instruction issue with register
renaming:
 Issue logic pre-reserves enough physical registers

for the bundle (fixed number?)
 Issue logic finds dependencies within bundle, maps

registers as necessary
 Issue logic finds dependencies between current

bundle and already in-flight bundles, maps registers
as necessary

A
dv. Techniques for Instruction D

elivery and S
peculation

Integrated Issue and Renaming

65Copyright © 2012, Elsevier Inc. All rights reserved.

 How much to speculate
 Mis-speculation degrades performance and power

relative to no speculation
 May cause additional misses (cache, TLB)

 Prevent speculative code from causing higher
costing misses (e.g. L2)

 Speculating through multiple branches
 Complicates speculation recovery
 No processor can resolve multiple branches per

cycle

A
dv. Techniques for Instruction D

elivery and S
peculation

How Much?

66Copyright © 2012, Elsevier Inc. All rights reserved.

 Speculation and energy efficiency
 Note: speculation is only energy efficient when it

significantly improves performance

 Value prediction
 Uses:

 Loads that load from a constant pool
 Instruction that produces a value from a small set of values

 Not been incorporated into modern processors
 Similar idea--address aliasing prediction--is used on

some processors

A
dv. Techniques for Instruction D

elivery and S
peculation

Energy Efficiency

