
16 November 2017

Chapter 2 — Instructions: Language of the Computer 1

1Copyright © 2012, Elsevier Inc. All rights reserved.

Chapter 5

Multiprocessors and

Thread-Level Parallelism

Computer Architecture
A Quantitative Approach, Fifth Edition

2Copyright © 2012, Elsevier Inc. All rights reserved.

Introduction

 Thread-Level parallelism
 Have multiple program counters
 Uses MIMD model
 Targeted for tightly-coupled shared-memory

multiprocessors

 For n processors, need n threads

 Amount of computation assigned to each thread
= grain size
 Threads can be used for data-level parallelism, but

the overheads may outweigh the benefit

Introduction

3

Why Parallelism?

 Faster (better performance)

 Less power consumption (think of N processors
running at frequency f vs. one processor running
at Nf). But, there is also static power

 Limits for single processor performance
(scalability)

 Howe much parallelism in the application
(Amdahl’s law)

 Redundancy and reliability

Copyright © 2012, Elsevier Inc. All rights reserved.

Introduction

16 November 2017

Chapter 2 — Instructions: Language of the Computer 2

4Copyright © 2012, Elsevier Inc. All rights reserved.

Types -- SMP
 Symmetric multiprocessors

(SMP)
 Small number of cores
 AKA Tightly coupled

multiprocessors
 Share single memory with

uniform memory latency
 Bus is a bottleneck
 Most of the communication is

handled by OS/HW
 Existing multi-core

Introduction

Common
(shared) bus

5Copyright © 2012, Elsevier Inc. All rights reserved.

Types -- DSM

 Distributed shared memory (DSM)
 Memory distributed among processors
 Loosely Coupled multiprocessors
 Non-uniform memory access/latency (NUMA)
 Processors connected via direct (switched) and non-direct (multi-

hop) interconnection networks
 Communication handled by programmer (message passing)

(Synchronization explicitly required

Introduction

6

6

Ocean Kernel
Procedure Solve(A)
begin
diff = done = 0;
while (!done) do

diff = 0;
for i 1 to n do

for j 1 to n do
temp = A[i,j];
A[i,j] 0.2 * (A[i,j] + neighbors);
diff += abs(A[i,j] – temp);

end for
end for
if (diff < TOL) then done = 1;

end while
end procedure

Introduction

Slide credit: Rajeev Balasubramonian

16 November 2017

Chapter 2 — Instructions: Language of the Computer 3

7

7

Shared Address Space Model
int n, nprocs;
float **A, diff;
LOCKDEC(diff_lock);
BARDEC(bar1);

main()
begin

read(n); read(nprocs);
A G_MALLOC();
initialize (A);
CREATE (nprocs,Solve,A);
WAIT_FOR_END (nprocs);

end main

procedure Solve(A)
int i, j, pid, done=0;
float temp, mydiff=0;
int mymin = 1 + (pid * n/procs);
int mymax = mymin + n/nprocs -1;
while (!done) do

mydiff = diff = 0;
BARRIER(bar1,nprocs);
for i mymin to mymax

for j 1 to n do
…

endfor
endfor
LOCK(diff_lock);
diff += mydiff;
UNLOCK(diff_lock);
BARRIER (bar1, nprocs);
if (diff < TOL) then done = 1;
BARRIER (bar1, nprocs);

endwhile

Introduction

Slide credit: Rajeev Balasubramonian

8

8

Message Passing Model
main()

read(n); read(nprocs);
CREATE (nprocs-1, Solve);
Solve();
WAIT_FOR_END (nprocs-1);

procedure Solve()
int i, j, pid, nn = n/nprocs, done=0;
float temp, tempdiff, mydiff = 0;
myA malloc(…)
initialize(myA);
while (!done) do

mydiff = 0;
if (pid != 0)
SEND(&myA[1,0], n, pid-1, ROW);

if (pid != nprocs-1)
SEND(&myA[nn,0], n, pid+1, ROW);

if (pid != 0)
RECEIVE(&myA[0,0], n, pid-1, ROW);

if (pid != nprocs-1)
RECEIVE(&myA[nn+1,0], n, pid+1, ROW);

for i 1 to nn do
for j 1 to n do

…
endfor

endfor
if (pid != 0)
SEND(mydiff, 1, 0, DIFF);
RECEIVE(done, 1, 0, DONE);

else
for i 1 to nprocs-1 do

RECEIVE(tempdiff, 1, *, DIFF);
mydiff += tempdiff;

endfor
if (mydiff < TOL) done = 1;
for i 1 to nprocs-1 do

SEND(done, 1, I, DONE);
endfor

endif
endwhile

Introduction

Slide credit: Rajeev Balasubramonian

9

Design issue

 Shared memory synchronization
 How to handle locks, atomic operations

 Cache coherence
 How to ensure correct operation in the presence of

private caches

 Memory consistency: Ordering of memory
operations
 What should the programmer expect the hardware to

provide?

 Shared resource management

 Communication: Interconnects

Copyright © 2012, Elsevier Inc. All rights reserved.

Slide credit : Onur Mutlu

16 November 2017

Chapter 2 — Instructions: Language of the Computer 4

10

Programming Issues

 Load imbalance
 How to partition a single task into multiple tasks

 Synchronization
 How to synchronize (efficiently) between tasks

 How to communicate between tasks

 Locks, barriers, pipeline stages, condition variables,
semaphores, atomic operations, …

 Ensuring correct operation while optimizing for
performance

Copyright © 2012, Elsevier Inc. All rights reserved.

Slide credit : Onur Mutlu

11

Example

 2 processors trying to enter a critical section

 What could go wrong

 Blackboard ….

Copyright © 2012, Elsevier Inc. All rights reserved.

12Copyright © 2012, Elsevier Inc. All rights reserved.

Cache Coherence

 Processors may see different values through
their caches:

C
entralized S

hared-M
em

ory A
rchitectures

16 November 2017

Chapter 2 — Instructions: Language of the Computer 5

13

Memory ordering

 In a single processor
 Load and stores are executed according to program

order

 Sometimes, out-of-order execution, but that doesn’t
change the semantics

 Same thing happens every time we run the
program (good for debugging)

Copyright © 2012, Elsevier Inc. All rights reserved.

14

Memory ordering

 multiprocessors
 Memory operations happens concurrently

 We need some sort of global order

 If completely independent, we don’t care

 The problem is when they share some data.

Copyright © 2012, Elsevier Inc. All rights reserved.

15Copyright © 2012, Elsevier Inc. All rights reserved.

Cache Coherence

 Coherence: How do other processors see a
memory update?

 Writes to the same location by any two
processors are seen in the same order by all
processors

 Consistency
 When a written value will be returned by a read
 If a processor writes location A followed by location B,

any processor that sees the new value of B must also
see the new value of A

C
entralized S

hared-M
em

ory A
rchitectures

16 November 2017

Chapter 2 — Instructions: Language of the Computer 6

16

Cache Coherence -- more

 A memory system is coherent if
1. A read by P to location X that follows a write by P to

location X with no writes to X in between (by any
processor) returns the value written by P.

2. A read by processor p1 to X that follows a write by P2
to X returns the value written by P2 if the read and
write are sufficiently separated in time, and no other
writes to X occurred between the two accesses.

3. Writes to the same location are serialized Two writes
by two processors to the same location are seen in the
same order by all processors

Copyright © 2012, Elsevier Inc. All rights reserved.

17Copyright © 2012, Elsevier Inc. All rights reserved.

Enforcing Coherence

 Coherent caches provide:
 Migration: movement of data
 Replication: multiple copies of data

 Cache coherence protocols
 Directory based

 Sharing status of each block kept in one location (distributed
memory model).

 Snooping
 Each core tracks sharing status of each block (SMP).

C
entralized S

hared-M
em

ory A
rchitectures

18

Cache Coherence Protocols

1. Directory based — Sharing status of a
block of physical memory is kept in just one
location, the directory

2. Snooping — Every cache with a copy of
data also has a copy of sharing status of
block, but no centralized state is kept
 All caches are accessible via some broadcast medium (a

bus or switch)

 All cache controllers monitor or snoop on the medium to
determine whether or not they have a copy of a block that
is requested on a bus or switch access

16 November 2017

Chapter 2 — Instructions: Language of the Computer 7

19

SMP or Centralized Shared
Memory

Copyright © 2012, Elsevier Inc. All rights reserved.

P

$

P

$

P

$

P

$

Main
memory

I/O

20

Snooping Protocols

 The processor may have an exclusive access
to the data, in this case the processor may
change it. This is knows as write invalidate

Processor activity Bus content of A Content of B Memory

0

A reads X Miss 0 ------ 0

B reads X Miss 0 0 0

A writes X INV X 1 ---- 0

B reads X Miss 1 1 1

21

Snooping Protocols

 The alternative is to update write update or
write broadcast and is only done for shared
blocks

Processor activity Bus content of A Content of B Memory

0

A reads X Miss 0 ------ 0

B reads X Miss 0 0 0

A writes X INV X 1 1 1

B reads X Miss 1 1 1

16 November 2017

Chapter 2 — Instructions: Language of the Computer 8

22Copyright © 2012, Elsevier Inc. All rights reserved.

Snoopy Coherence Protocols

 Write invalidate
 On write, invalidate all other copies
 Use bus itself to serialize

 Write cannot complete until bus access is obtained

 Write update
 On write, update all copies

C
entralized S

hared-M
em

ory A
rchitectures

23

Comparison

 Multiple writes to the same word with no
intervening reads require multiple write
broadcast for an update protocol, and one
invalidate for invalidate protocols.

 With multiword cache blocks, write to multiple
words (bytes) in the same line require multiple
broadcast, while only one invalidate
(assuming no intervening reads).

 The delay between writing a word in a
processor, and reading it by another
processor is less in write update

24Copyright © 2012, Elsevier Inc. All rights reserved.

Snooping Coherence Protocols

 Locating an item when a read miss occurs
 In write-back cache, the updated value must be sent

to the requesting processor

 Cache lines marked as shared or
exclusive/modified
 Only writes to shared lines need an invalidate

broadcast
 After this, the line is marked as exclusive

C
entralized S

hared-M
em

ory A
rchitectures

16 November 2017

Chapter 2 — Instructions: Language of the Computer 9

25Copyright © 2012, Elsevier Inc. All rights reserved.

Snooping Coherence Protocols

C
entralized S

hared-M
em

ory A
rchitectures

26Copyright © 2012, Elsevier Inc. All rights reserved.

Snooping Coherence Protocols
C

entralized S
hared-M

em
ory A

rchitectures

27Copyright © 2012, Elsevier Inc. All rights reserved.

Snoopy Coherence Protocols

 Complications for the basic MSI protocol:
 Operations are not atomic

 E.g. detect miss, acquire bus, receive a response
 Creates possibility of deadlock and races
 One solution: processor that sends invalidate can hold bus

until other processors receive the invalidate

 Extensions:
 Add exclusive state to indicate clean block in only one

cache (MESI protocol)
 Prevents needing to write invalidate on a write

 Owned state

C
entralized S

hared-M
em

ory A
rchitectures

16 November 2017

Chapter 2 — Instructions: Language of the Computer 10

28Copyright © 2012, Elsevier Inc. All rights reserved.

Coherence Protocols: Extensions

 Shared memory bus
and snooping
bandwidth is
bottleneck for scaling
symmetric
multiprocessors
 Duplicating tags
 Place directory in

outermost cache
 Use crossbars or point-

to-point networks with
banked memory

C
entralized S

hared-M
em

ory A
rchitectures

29Copyright © 2012, Elsevier Inc. All rights reserved.

Coherence Protocols

 AMD Opteron:
 Memory directly connected to each multicore chip in

NUMA-like organization
 Implement coherence protocol using point-to-point

links
 Use explicit acknowledgements to order operations

C
entralized S

hared-M
em

ory A
rchitectures

30Copyright © 2012, Elsevier Inc. All rights reserved.

Performance

 Coherence influences cache miss rate
 Coherence misses

 True sharing misses
 Write to shared block (transmission of invalidation)
 Read an invalidated block

 False sharing misses
 Read an unmodified word in an invalidated block

P
erform

ance of S
ym

m
etric S

hared-M
em

ory M
ultiprocessors

16 November 2017

Chapter 2 — Instructions: Language of the Computer 11

31Copyright © 2012, Elsevier Inc. All rights reserved.

Performance Study: Commercial Workload

P
erform

ance of S
ym

m
etric S

hared-M
em

ory M
ultiprocessors

32Copyright © 2012, Elsevier Inc. All rights reserved.

Performance Study: Commercial Workload
P

erform
ance of S

ym
m

etric S
hared-M

em
ory M

ultiprocessors

33Copyright © 2012, Elsevier Inc. All rights reserved.

Performance Study: Commercial Workload

P
erform

ance of S
ym

m
etric S

hared-M
em

ory M
ultiprocessors

16 November 2017

Chapter 2 — Instructions: Language of the Computer 12

34Copyright © 2012, Elsevier Inc. All rights reserved.

Performance Study: Commercial Workload

P
erform

ance of S
ym

m
etric S

hared-M
em

ory M
ultiprocessors

35Copyright © 2012, Elsevier Inc. All rights reserved.

Directory Protocols

 Directory keeps track of every block
 Which caches have each block
 Dirty status of each block

 Implement in shared L3 cache
 Keep bit vector of size = # cores for each block in L3
 Not scalable beyond shared L3

 Implement in a distributed fashion:

D
istributed S

hared M
em

ory and D
irectory-B

ased C
oh

erence

36Copyright © 2012, Elsevier Inc. All rights reserved.

Directory Protocols

 For each block, maintain state:
 Shared

 One or more nodes have the block cached, value in memory
is up-to-date

 Set of node IDs

 Uncached
 Modified

 Exactly one node has a copy of the cache block, value in
memory is out-of-date

 Owner node ID

 Directory maintains block states and sends
invalidation messages

D
istributed S

hared M
em

ory and D
irectory-B

ased C
oherence

16 November 2017

Chapter 2 — Instructions: Language of the Computer 13

37Copyright © 2012, Elsevier Inc. All rights reserved.

Messages

D
istributed S

hared M
em

ory and D
irectory-B

ased C
oh

erence

38Copyright © 2012, Elsevier Inc. All rights reserved.

Directory Protocols
D

istributed S
hared M

em
ory and D

irectory-B
ased C

oh
erence

39Copyright © 2012, Elsevier Inc. All rights reserved.

Directory Protocols

 For uncached block:
 Read miss

 Requesting node is sent the requested data and is made the
only sharing node, block is now shared

 Write miss
 The requesting node is sent the requested data and becomes

the sharing node, block is now exclusive

 For shared block:
 Read miss

 The requesting node is sent the requested data from
memory, node is added to sharing set

 Write miss
 The requesting node is sent the value, all nodes in the

sharing set are sent invalidate messages, sharing set only
contains requesting node, block is now exclusive

D
istributed S

hared M
em

ory and D
irectory-B

ased C
oherence

16 November 2017

Chapter 2 — Instructions: Language of the Computer 14

40Copyright © 2012, Elsevier Inc. All rights reserved.

Directory Protocols

 For exclusive block:
 Read miss

 The owner is sent a data fetch message, block becomes
shared, owner sends data to the directory, data written
back to memory, sharers set contains old owner and
requestor

 Data write back
 Block becomes uncached, sharer set is empty

 Write miss
 Message is sent to old owner to invalidate and send the

value to the directory, requestor becomes new owner,
block remains exclusive

D
istributed S

hared M
em

ory and D
irectory-B

ased C
oh

erence

41Copyright © 2012, Elsevier Inc. All rights reserved.

Synchronization

 Basic building blocks:
 Atomic exchange

 Swaps register with memory location

 Test-and-set
 Sets under condition

 Fetch-and-increment
 Reads original value from memory and increments it in memory

 Requires memory read and write in uninterruptable instruction

 load linked/store conditional
 If the contents of the memory location specified by the load linked

are changed before the store conditional to the same address, the
store conditional fails

S
ynchronizatio

n

42Copyright © 2012, Elsevier Inc. All rights reserved.

Implementing Locks

 Spin lock
 If no coherence:

DADDUI R2,R0,#1

lockit: EXCH R2,0(R1) ;atomic exchange

BNEZ R2,lockit ;already locked?

 If coherence:
lockit: LD R2,0(R1) ;load of lock

BNEZ R2,lockit ;not available-spin

DADDUI R2,R0,#1 ;load locked value

EXCH R2,0(R1) ;swap

BNEZ R2,lockit ;branch if lock wasn’t 0

S
ynchronizatio

n

16 November 2017

Chapter 2 — Instructions: Language of the Computer 15

43Copyright © 2012, Elsevier Inc. All rights reserved.

Implementing Locks

 Advantage of this scheme: reduces memory
traffic

S
ynchronizatio

n

44Copyright © 2012, Elsevier Inc. All rights reserved.

Models of Memory Consistency
M

odels of M
em

ory C
onsistency: A

n Introduction

Processor 1:

A=0

…

A=1

if (B==0) …

Processor 2:

B=0

…

B=1

if (A==0) …

 Should be impossible for both if-statements to be
evaluated as true
 Delayed write invalidate?

 Sequential consistency:
 Result of execution should be the same as long as:

 Accesses on each processor were kept in order
 Accesses on different processors were arbitrarily interleaved

45Copyright © 2012, Elsevier Inc. All rights reserved.

Implementing Locks

 To implement, delay completion of all memory
accesses until all invalidations caused by the
access are completed
 Reduces performance!

 Alternatives:
 Program-enforced synchronization to force write on

processor to occur before read on the other processor
 Requires synchronization object for A and another for B

 “Unlock” after write
 “Lock” after read

M
odels of M

em
ory C

onsistency: A
n Introduction

16 November 2017

Chapter 2 — Instructions: Language of the Computer 16

46Copyright © 2012, Elsevier Inc. All rights reserved.

Relaxed Consistency Models

 Rules:
 X → Y

 Operation X must complete before operation Y is done
 Sequential consistency requires:

 R → W, R → R, W → R, W → W

 Relax W → R
 “Total store ordering”

 Relax W → W
 “Partial store order”

 Relax R → W and R → R
 “Weak ordering” and “release consistency”

M
odels of M

em
ory C

onsistency: A
n Introduction

47Copyright © 2012, Elsevier Inc. All rights reserved.

Relaxed Consistency Models

 Consistency model is multiprocessor specific

 Programmers will often implement explicit
synchronization

 Speculation gives much of the performance
advantage of relaxed models with sequential
consistency
 Basic idea: if an invalidation arrives for a result that

has not been committed, use speculation recovery

M
odels of M

em
ory C

onsistency: A
n Introduction

