
41Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Basics

 Six basic cache optimizations:
 Larger block size

 Reduces compulsory misses
 Increases capacity and conflict misses, increases miss penalty

 Larger total cache capacity to reduce miss rate
 Increases hit time, increases power consumption

 Higher associativity
 Reduces conflict misses
 Increases hit time, increases power consumption

 Higher number of cache levels
 Reduces overall memory access time

 Giving priority to read misses over writes
 Reduces miss penalty

 Avoiding address translation in cache indexing
 Reduces hit time

 Victim cache

Introduction

42Copyright © 2012, Elsevier Inc. All rights reserved.

Ten Advanced Optimizations

 Small and simple first level caches
 Way Prediction
 Pipelined caches
 Non-blocking cache
 Multibanked cache
 Critical word first
 Merging write buffer
 Compiler optimization
 Hardware prefetching
 Compiler prefetching

A
dvanced O

ptim
iza

tions

43

Small and Simple

 No mux in the critical path of a direct mapped 
cache.

 Bigger cache means more energy.

 CACTI – An idea for the project/paper review

 Many processors takes at least 2 clock cycles to 
access the cache, longer hit time may not be that 
critical

 The use of a virtual index cache, limits the cache 
size to page size  associativity (recently a trend 
to increase associativity).

Copyright © 2012, Elsevier Inc. All rights reserved.



44Copyright © 2012, Elsevier Inc. All rights reserved.

L1 Size and Associativity

Access time vs. size and associativity

A
dvanced O

ptim
iza

tions

45Copyright © 2012, Elsevier Inc. All rights reserved.

L1 Size and Associativity

Energy per read vs. size and associativity

A
dvanced O

ptim
iza

tions

46Copyright © 2012, Elsevier Inc. All rights reserved.

Way Prediction

 To improve hit time, predict the way to pre-set 
mux
 Mis-prediction gives longer hit time
 Prediction accuracy

 > 90% for two-way
 > 80% for four-way
 I-cache has better accuracy than D-cache

 First used on MIPS R10000 in mid-90s
 Used on ARM Cortex-A8

 Extend to predict block as well
 “Way selection”
 Increases mis-prediction penalty

A
dvanced O

ptim
izations



47Copyright © 2012, Elsevier Inc. All rights reserved.

Pipelining Cache

 Pipeline cache access to improve bandwidth
 Examples:

 Pentium:  1 cycle
 Pentium Pro – Pentium III:  2 cycles
 Pentium 4 – Core i7:  4 cycles

 Increases branch miss-prediction penalty (longer 
pipeline).

 Makes it easier to increase associativity

A
dvanced O

ptim
iza

tions

48Copyright © 2012, Elsevier Inc. All rights reserved.

Nonblocking Caches

 For out-of-order 
execution (later on 
this point).

 Allow hits before 
previous misses 
complete
 “Hit under miss”
 “Hit under multiple 

miss”

 L2 must support this
 In general, 

processors can hide 
L1 miss penalty but 
not L2 miss penalty

A
dvanced O

ptim
iza

tions

Single core i7 using SPEC2006

49Copyright © 2012, Elsevier Inc. All rights reserved.

Multibanked Caches

 Organize cache as independent banks to 
support simultaneous access
 ARM Cortex-A8 supports 1-4 banks for L2
 Intel i7 supports 4 banks for L1 and 8 banks for L2

 Interleave banks according to block address

A
dvanced O

ptim
izations



50Copyright © 2012, Elsevier Inc. All rights reserved.

Critical Word First, Early Restart

 Critical word first
 Request missed word from memory first
 Send it to the processor as soon as it arrives

 Early restart
 Request words in normal order
 Send missed work to the processor as soon as it 

arrives

 Effectiveness of these strategies depends on 
block size and likelihood of another access to 
the portion of the block that has not yet been 
fetched

A
dvanced O

ptim
iza

tions

51Copyright © 2012, Elsevier Inc. All rights reserved.

Merging Write Buffer

 When storing to a block that is already pending in the 
write buffer, update write buffer

 Reduces stalls due to full write buffer
 Do not apply to I/O addresses

A
dvanced O

ptim
iza

tions

No write 
buffering

Write buffering

52Copyright © 2012, Elsevier Inc. All rights reserved.

Compiler Optimizations

 Loop Interchange
 Swap nested loops to access memory in 

sequential order (row major access)

 Blocking
 Instead of accessing entire rows or columns, 

subdivide matrices into blocks
 Requires more memory accesses but improves 

locality of accesses

A
dvanced O

ptim
izations



53Copyright © 2012, Elsevier Inc. All rights reserved.

Hardware Prefetching

 Fetch two blocks on miss (include next 
sequential block) (the 2nd one goes to 
instruction stream buffer, must be checked if 
found do not go to cache).

A
dvanced O

ptim
iza

tions

Pentium 4 Pre-fetching

54Copyright © 2012, Elsevier Inc. All rights reserved.

Compiler Prefetching

 Insert prefetch instructions before data is 
needed

 Non-faulting:  prefetch doesn’t cause 
exceptions

 Register prefetch
 Loads data into register

 Cache prefetch
 Loads data into cache

 Combine with loop unrolling and software 
pipelining

A
dvanced O

ptim
iza

tions

55Copyright © 2012, Elsevier Inc. All rights reserved.

Summary

A
dvanced O

ptim
izations


