
Concurrency

Franck van Breugel

March 29, 2018

1 Readers-Writers: synchronized
Modify the code below so that it uses synchronized blocks.

public class Database {
private boolean writing;
private int readers;

/**
* Initializes this database.
*/
public Database() {
this.writing = false;
this.readers = 0;

}

public void read() {
this.beginRead();
// read
assert !this.writing;
this.endRead();

}

private synchronized void beginRead() {
while (this.writing) {
try {
this.wait();

} catch (InterruptedException e) {
e.printStackTrace();

}
}
this.readers++;

1

}

private synchronized void endRead() {
this.readers--;
if (this.readers == 0) {
this.notifyAll();

}
}

2 Readers-Writers: start all at the same time
The class CyclicBarrier contains the constructor

CyclicBarrier(int parties)

Initializes this CyclicBarrier that will trip when the given number of parties (threads) are
waiting upon it.

public int await()

Waits until all parties have invoked await on this barrier. Returns the arrival index of the current
thread (the last thread to arrive has index zero).

Modify the code below so that all readers and writers start at the same time.

public class ReadersAndWriters {
public static void main(String[] args) {
final int READERS = 2;
final int WRITERS = 2;

Database database = new Database();

Reader[] reader = new Reader[READERS];
for (int i = 0; i < READERS; i++) {
reader[i] = new Reader(database);

}
Writer[] writer = new Writer[WRITERS];
for (int i = 0; i < WRITERS; i++) {
writer[i] = new Writer(database);

}

for (int i = 0; i < READERS; i++) {
reader[i].start();

}
for (int i = 0; i < WRITERS; i++) {

2

writer[i].start();
}

}
}

public class Reader extends Thread {
private Database database;

public Reader(Database database) {
super();
this.database = database;

}

public void run() {
this.database.read();

}
}

3 Race conditions and data races
A race condition is a flaw that occurs when the timing or ordering of events affects a program’s
correctness. Generally speaking, some kind of external timing or ordering non-determinism is
needed to produce a race condition.

A data race happens when there are two memory accesses in a program where both

• target the same location,

• are performed concurrently by two threads,

• are not reads (at least is a write),

• are not synchronization operations.

Give an example that has both a data race and a race condition.

public class

3

}

Give an example that has a race condition but does not have a data race.

public class

}

Give an example that has a data race but does not have a race condition.

public class

4

}

4 Concurrent stack
Objects of type AtomicReference<V> contain a value of type V that may be updated atomi-
cally.

The class contains the method

public final boolean compareAndSet(V expect, V update)

It atomically sets the value to update if the current value of the object == expect. It returns
true if the update is successful, and false otherwise.

public class Node<T> {
private final T data;
private Node<T> next;

public Node(T data, Node<T> next) {
this.data = data;
this.next = next;

}
...

}

Implement a Stack by means of AtomicReference<V>.

public class Stack<T> {

5

}

The class AtomicReferenceFieldUpdater<T,V> contains the method

public static <U,W> AtomicReferenceFieldUpdater<U,W>
newUpdater(Class<U> tclass, Class<W> vclass, String fieldName)

It returns an object that can be used to atomically update the field with the given fieldName.

The class contains the method

public abstract boolean compareAndSet(T object, V expect, V update)

It atomically sets the field of the given object managed by this updater to the given update
value if the current value === expect.

This method is guaranteed to be atomic with respect to other calls to compareAndSet, but not
necessarily with respect to other changes in the field.

Implement a Stack by means of AtomicReferenceFieldUpdater<T,V>.

public class Stack<T> {

}

6

