
Quiz 2

You can find your grade for Quiz 2 at
https://www.cse.yorku.ca/~roumani/ePost/server/

ep.cgi?year=2017-18&term=W&course=4315.

You received an email with feedback at your EECS account.

1/30

https://www.cse.yorku.ca/~roumani/ePost/server/ep.cgi?year=2017-18&term=W&course=4315
https://www.cse.yorku.ca/~roumani/ePost/server/ep.cgi?year=2017-18&term=W&course=4315

Draft project proposal

Please submit a draft of your project proposal (worth 2%) before
Wednesday February 21 by

transferring the file to red.eecs.yorku.ca and

submitting the file using

submit 4315 draft <name of file>

2/30

Search
EECS 4315

www.eecs.yorku.ca/course/4315/

3/30

www.eecs.yorku.ca/course/4315/

Source: weknowyourdreams.com

4/30

Testing our searches

Question

How do we test our DFSearch and BFSearch?

Answer

Compare them with the corresponding JPF search strategies.

Question

How do we compare search strategies?

Answer

Implement a search listener that records the notifications.

5/30

Testing our searches

Question

How do we test our DFSearch and BFSearch?

Answer

Compare them with the corresponding JPF search strategies.

Question

How do we compare search strategies?

Answer

Implement a search listener that records the notifications.

5/30

Testing our searches

Question

How do we test our DFSearch and BFSearch?

Answer

Compare them with the corresponding JPF search strategies.

Question

How do we compare search strategies?

Answer

Implement a search listener that records the notifications.

5/30

Testing our searches

Question

How do we test our DFSearch and BFSearch?

Answer

Compare them with the corresponding JPF search strategies.

Question

How do we compare search strategies?

Answer

Implement a search listener that records the notifications.

5/30

Testing our searches

Question

How do we represent a notification of a search?

Answer

For example, as a String.

Question

How do we represents a collection of notifications?

Answer

For example, as a List<String> (order in which the notifications
happen matters).

6/30

Testing our searches

Question

How do we represent a notification of a search?

Answer

For example, as a String.

Question

How do we represents a collection of notifications?

Answer

For example, as a List<String> (order in which the notifications
happen matters).

6/30

Testing our searches

Question

How do we represent a notification of a search?

Answer

For example, as a String.

Question

How do we represents a collection of notifications?

Answer

For example, as a List<String> (order in which the notifications
happen matters).

6/30

Testing our searches

Question

How do we represent a notification of a search?

Answer

For example, as a String.

Question

How do we represents a collection of notifications?

Answer

For example, as a List<String> (order in which the notifications
happen matters).

6/30

SearchNotificationRecorder

public class SearchNotificationRecorder

implements SearchListener {

private List<String> notifications;

public SearchNotificationRecorder() {

this.notification = new ArrayList<String>();

}

...

}

7/30

SearchNotificationRecorder

Question

Implement

public void searchStarted(Search search) {

...

}

Answer

public void searchStarted(Search search) {

this.notifications.add("started in state "

+ search.getStateId());

}

8/30

SearchNotificationRecorder

Question

Implement

public void searchStarted(Search search) {

...

}

Answer

public void searchStarted(Search search) {

this.notifications.add("started in state "

+ search.getStateId());

}

8/30

SearchNotificationRecorder

Question

Implement

public void stateAdvanced(Search search) {

...

}

Answer

public void stateAdvanced(Search search) {

this.recording.add("advanced to state "

+ search.getStateId());

}

9/30

SearchNotificationRecorder

Question

Implement

public void stateAdvanced(Search search) {

...

}

Answer

public void stateAdvanced(Search search) {

this.recording.add("advanced to state "

+ search.getStateId());

}

9/30

SearchNotificationRecorder

Question

In which method is the list serialized?

Answer

In searchFinished.a

aOne might be tempted to use Java’s finalize method. However, JPF
does not ensure that search listeners can be garbage collected at the end of the
search and, hence, the finalize method is not invoked.

Question

What should we do if a notification occurs after searchFinished?

Answer

For example, serialize the list again.

10/30

SearchNotificationRecorder

Question

In which method is the list serialized?

Answer

In searchFinished.a

aOne might be tempted to use Java’s finalize method. However, JPF
does not ensure that search listeners can be garbage collected at the end of the
search and, hence, the finalize method is not invoked.

Question

What should we do if a notification occurs after searchFinished?

Answer

For example, serialize the list again.

10/30

SearchNotificationRecorder

Question

In which method is the list serialized?

Answer

In searchFinished.a

aOne might be tempted to use Java’s finalize method. However, JPF
does not ensure that search listeners can be garbage collected at the end of the
search and, hence, the finalize method is not invoked.

Question

What should we do if a notification occurs after searchFinished?

Answer

For example, serialize the list again.

10/30

SearchNotificationRecorder

Question

In which method is the list serialized?

Answer

In searchFinished.a

aOne might be tempted to use Java’s finalize method. However, JPF
does not ensure that search listeners can be garbage collected at the end of the
search and, hence, the finalize method is not invoked.

Question

What should we do if a notification occurs after searchFinished?

Answer

For example, serialize the list again.

10/30

Serialize the list

private void serialize() {

try {

FileOutputStream output

= new FileOutputStream("notifications.ser");

ObjectOutputStream stream

= new ObjectOutputStream(output);

stream.writeObject(this.notifications);

stream.close();

output.close();

} catch (IOException e) {

System.out.println("Something went wrong with serializing the list of notifications");

}

}

11/30

Serialize the list

We want the user to be able to specify the name of the file to
store the serialized list.

1 Add a key and corresponding value for the file name in the
configuration file.

2 Extract the file name from the Config object in the
constructor.

3 Store the file name in an attribute.

4 Use the attribute in the serialize method.

12/30

Serialize the list

Add a key and corresponding value for the file name in the
configuration file.

...

listener=SearchNotificationRecorder

recorder.file=notifications.ser

...

13/30

Serialize the list

Extract the file name from the Config object in the constructor.

public SearchNotificationRecorder(Config config) {

...

String fileName

= config.getString("recorder.file", "tmp.ser");

...

}

14/30

Serialize the list

Store the file name in an attribute.

public class SearchNotificationRecorder

implements SearchListener {

private String fileName;

public SearchNotificationRecorder(Config config) {

...

this.fileName

= config.getString("recorder.file", "tmp.ser");

...

}

...

}

15/30

Serialize the list

Use the attribute in the serialize method.

private void serialize() {

try {

FileOutputStream output

= new FileOutputStream(this.fileName);

ObjectOutputStream stream

= new ObjectOutputStream(output);

stream.writeObject(this.recording);

stream.close();

output.close();

} catch (IOException e) {

System.out.println("Something went wrong with serializing the list of notifications");

}

}

16/30

Serialize the list

We call serialize in searchFinished. We serialize the list
again if a notification occurs after searchFinished.

Question

How do we keep track whether searchFinished has been
invoked?

Answer

Introduce an attribute finished.

17/30

Serialize the list

We call serialize in searchFinished. We serialize the list
again if a notification occurs after searchFinished.

Question

How do we keep track whether searchFinished has been
invoked?

Answer

Introduce an attribute finished.

17/30

Serialize the list

We call serialize in searchFinished. We serialize the list
again if a notification occurs after searchFinished.

Question

Add attribute finished.

Answer

private boolean finished;

18/30

Serialize the list

We call serialize in searchFinished. We serialize the list
again if a notification occurs after searchFinished.

Question

Add attribute finished.

Answer

private boolean finished;

18/30

Serialize the list

We call serialize in searchFinished. We serialize the list
again if a notification occurs after searchFinished.

Question

Initialize attribute finished.

Answer

public SearchNotificationRecorder() {

...

this.finished = false;

...

}

19/30

Serialize the list

We call serialize in searchFinished. We serialize the list
again if a notification occurs after searchFinished.

Question

Initialize attribute finished.

Answer

public SearchNotificationRecorder() {

...

this.finished = false;

...

}

19/30

Serialize the list

We call serialize in searchFinished. We serialize the list
again if a notification occurs after searchFinished.

Question

Implement searchFinished.

Answer

public void searchFinished(Search search) {

this.recording.add("finished");

this.finished = true;

this.serialize();

}

20/30

Serialize the list

We call serialize in searchFinished. We serialize the list
again if a notification occurs after searchFinished.

Question

Implement searchFinished.

Answer

public void searchFinished(Search search) {

this.recording.add("finished");

this.finished = true;

this.serialize();

}

20/30

Serialize the list

We call serialize in searchFinished. We serialize the list
again if a notification occurs after searchFinished.

Question

Implement searchStarted.

Answer

public void searchStarted(Search search) {

this.recording.add("started");

this.checkFinished();

}

private checkFinished() {

if (this.finished) {

this.serialize();

}

}

21/30

Serialize the list

We call serialize in searchFinished. We serialize the list
again if a notification occurs after searchFinished.

Question

Implement searchStarted.

Answer

public void searchStarted(Search search) {

this.recording.add("started");

this.checkFinished();

}

private checkFinished() {

if (this.finished) {

this.serialize();

}

}
21/30

JPF

Java bytecode JPF report

configuration file

configuration:
listener=SearchNotificationRecorder

recorder.file=notifications.ser

report:
notifications.ser contains a serialized list of notifications

22/30

Code

Question

For which (byte)code should we run JPF with the
SearchNotificationRecorder listener?

Answer

“Random” (byte)code.

23/30

Code

Question

For which (byte)code should we run JPF with the
SearchNotificationRecorder listener?

Answer

“Random” (byte)code.

23/30

Code

Question

Given a finite directed graph G , generate a Java app such that
JPF run on the app with the SimpleDot listener produces G .

Question

Given a finite directed graph

0

1 2

generate a Java app such that JPF run on the app with the
SimpleDot listener produces G .

24/30

Code

Question

Given a finite directed graph G , generate a Java app such that
JPF run on the app with the SimpleDot listener produces G .

Question

Given a finite directed graph

0

1 2

generate a Java app such that JPF run on the app with the
SimpleDot listener produces G .

24/30

Code

1 public class Sample {

2 public static void main(String[] args) {

3 final Random RANDOM = new Random();

4 boolean done = false;

5 int state = 0;

6 while (!done) {

7 switch (state) {

...

28 }

29 }

30 }

31 }

25/30

Code

8 case 0:

9 switch (RANDOM.nextInt(2)) {

10 case 0:

11 state = 1; break;

12 case 1:

13 state = 2; break;

14 };

15 break;

16 case 1:

17 switch (RANDOM.nextInt(1)) {

18 case 0:

19 state = 2; break;

20 };

21 break;

22 case 2:

23 switch (RANDOM.nextInt(1)) {

24 case 0:

25 state = 1; break;

26 };

27 break; 26/30

State space

27/30

Code

name: name of the app
number: number of states of the model of the app

Question

Generate a class with name name such that its model is a random
graph with number vertices.

28/30

Code

Answer

1 open file name for writing

2 print line 1–7
3 for n = 0, . . . , number

1 print case n:
2 choose successors of state n randomly
3 determine the number of successors
4 if successors = 0 then

1 print done = true;

else

1 print switch (RANDOM.nextInt(successors)) {
2 for s = 0, . . . , successors

1 print case s:
2 print state = i; break, where i is the sth successor

3 print }
4 print line 28–31

29/30

Shell script

Generate code

java Generate Sample.java 5

Compile code

javac Sample.java

Run JPF with gov.nasa.jpf.search.heuristic.BFSHeuristic

java -cp /cs/fac/packages/jpf/jpf-core/build/jpf.jar gov.nasa.jpf.JPF \

+target=Sample \

+classpath=. \

+native_classpath=. \

+cg.enumerate_random=true \

+search.class=gov.nasa.jpf.search.heuristic.BFSHeuristic \

+listener=SearchNotificationRecorder \

+recorder.file=first.ser

Run JPF with BFSearch

java -cp /cs/fac/packages/jpf/jpf-core/build/jpf.jar gov.nasa.jpf.JPF \

+target=Sample \

+classpath=. \

+native_classpath=. \

+cg.enumerate_random=true \

+search.class=BFSearch \

+listener=SearchNotificationRecorder \

+recorder.file=second.ser

Compare recordings

java CompareSearchRecordings first.ser second.ser

30/30

