
Draft project proposal

Please submit a draft of your project proposal (worth 2%) before
Wednesday February 21 by

transferring the file to red.eecs.yorku.ca and

submitting the file using

submit 4315 draft <name of file>

1/27



Peers and Native Peers
EECS 4315

www.eecs.yorku.ca/course/4315/

2/27

www.eecs.yorku.ca/course/4315/


JPF

public class Sine {

public static void main(String[] args) {

System.out.println(StrictMath.sin(0.3));

}

}

3/27



Applying JPF

Question

Why does JPF report the following error?

gov.nasa.jpf.vm.NoUncaughtExceptionsProperty

java.lang.UnsatisfiedLinkError: cannot find

native java.lang.StrictMath.sin

at java.lang.StrictMath.sin(no peer)

at Sinus.main(Sine.java:3)

Answer

Because the sin method is native.

public static native double sin(double a);

4/27



Applying JPF

Question

Why does JPF report the following error?

gov.nasa.jpf.vm.NoUncaughtExceptionsProperty

java.lang.UnsatisfiedLinkError: cannot find

native java.lang.StrictMath.sin

at java.lang.StrictMath.sin(no peer)

at Sinus.main(Sine.java:3)

Answer

Because the sin method is native.

public static native double sin(double a);

4/27



Native methods

Question

What is a native method?

Answer

A method that is implemented in a language other than Java but
that is invoked from a Java app.

5/27



Native methods

Question

What is a native method?

Answer

A method that is implemented in a language other than Java but
that is invoked from a Java app.

5/27



Native methods

Question

Why are there native methods?

Answer

Allows programmers to use code that has already been
implemented in other languages.

May increase the performance.

May support certain platform-dependent features.

Many of the classes of the Java standard library include native
methods.

6/27



Native methods

Question

Why are there native methods?

Answer

Allows programmers to use code that has already been
implemented in other languages.

May increase the performance.

May support certain platform-dependent features.

Many of the classes of the Java standard library include native
methods.

6/27



Java native interface (JNI)

JNI provides the infrastructure for Java code to use libraries
written in other languages such as C, C++ and assembly.

JVM

operating system

Invoking a native method can be viewed as transferring the
execution from the JVM to the operating system, since the native
code will be executed outside the JVM and will run on the
operating system.

Sheng Liang. Java Native Interface: Programmer’s Guide and
Specification. Prentice Hall. 1999.

7/27



Handling native methods

JPF provides several ways to handle native methods.

Using peers (also known as model classes).

Using native peers.

Using a combination of peers and native peers.

Using the extension jpf-nhandler.

8/27



Peers

A peer class captures the behaviour of a native method in pure
Java.

Question

How can we capture the behaviour of the sin method?

Answer

For example, we approximate the sine function with the Bhaskara
I’s sine approximation formula:

sin(a) =
16a(π − a)

5π2 − 4a(π − a)

9/27



Peers

A peer class captures the behaviour of a native method in pure
Java.

Question

How can we capture the behaviour of the sin method?

Answer

For example, we approximate the sine function with the Bhaskara
I’s sine approximation formula:

sin(a) =
16a(π − a)

5π2 − 4a(π − a)

9/27



Peers

A peer class captures the behaviour of a native method in pure
Java.

Question

How can we capture the behaviour of the sin method?

Answer

For example, we can use Math.sin.

10/27



Peers

A peer class captures the behaviour of a native method in pure
Java.

Question

How can we capture the behaviour of the sin method?

Answer

For example, we can use Math.sin.

10/27



Peer class

package java.lang;

public class StrictMath {

public static double sin(double a) {

return 16 * a * (Math.PI - a) /

(5 * Math.PI * Math.PI - 4 * a * (Math.PI - a));

}

}

11/27



Peer class

package java.lang;

public class StrictMath {

public static double sin(double a) {

return Math.sin(a);

}

}

12/27



Peer class

The peer class StrictMath is part of the package java.lang.

The peer class only contains one method, whereas the original
StrictMath class contains many more.

13/27



Peer classes

To ensure that JPF verifies the peer class, rather than the original
class, we need to add the peer class to JPFs classpath.

target=Sine

classpath=<folder containing StrictMath.class>

14/27



Native peers

Native peers are the JPF analogue of native code.

system under test

JPF

host JVM

operating system

Native peers are executed by the host JVM (recall that peers are
executed by JPF).

15/27



Model Java interface (MJI)

MJI is the JPF analogue of JNI. It provides the infrastructure for
interaction between JPF and the host JVM when executing a
native peer.

16/27



Naming

MJI uses a specific name pattern to establish the correspondence
between the original class (containing the native method) and its
native peer, similar to JNI.

package java.lang;

public class StrictMath

corresponds to

public class JPF_java_lang_StrictMath

extends NativePeer

17/27



Naming

Question

What is the MJI counterpart of

package java.lang;

public class Boolean

Answer

public class JPF_java_lang_Boolean

extends NativePeer

18/27



Naming

Question

What is the MJI counterpart of

package java.lang;

public class Boolean

Answer

public class JPF_java_lang_Boolean

extends NativePeer

18/27



Naming

MJI uses a specific name pattern to establish the correspondence
between the original class (containing the native method) and its
native peer, similar to JNI.

https://docs.oracle.com/javase/8/docs/technotes/

guides/jni/spec/design.html

public static native double sin(double a);

corresponds to

@MJI

public double sin__D__D(MJIEnv env,

int clsObjRef, double a)

19/27

https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/design.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/design.html


Naming

boolean Z
byte B
char C
short S
int I
long L
float F
double D

20/27



Naming

Question

What is the MJI counterpart of

public static Boolean valueOf(boolean b)

Answer

public int valueOf__Z__Ljava_lang_Boolean_2

(MJIEnv env, int clsObjRef, boolean b)

21/27



Naming

Question

What is the MJI counterpart of

public static Boolean valueOf(boolean b)

Answer

public int valueOf__Z__Ljava_lang_Boolean_2

(MJIEnv env, int clsObjRef, boolean b)

21/27



Naming

Question

What is the MJI counterpart of

public abstract boolean compareAndSet(T obj,

int expect, int update)

Answer

public boolean compareAndSet__Ljava_lang_Object_2II__Z

(MJIEnv env, int objRef, int obj, int expect, int update)

22/27



Naming

Question

What is the MJI counterpart of

public abstract boolean compareAndSet(T obj,

int expect, int update)

Answer

public boolean compareAndSet__Ljava_lang_Object_2II__Z

(MJIEnv env, int objRef, int obj, int expect, int update)

22/27



GenPeer

The app GenPeer, which is part of the package
gov.nasa.jpf.tool, generates the framework of a native peer
MJI class from a class.

The command

java -cp /cs/fac/packages/jpf/jpf-core/build/jpf.jar \

gov.nasa.jpf.tool.GenPeer

generates the output

usage: ’GenPeer [<option>..] <className> [<method>..]’

options: -s : system peer class (gov.nasa.jpf.vm)

-ci : create <clinit> MJI method

-m : create mangled method names

-a : create MJI methods for all target class methods

23/27



GenPeer

The command

java -cp /cs/fac/packages/jpf/jpf-core/build/jpf.jar \

gov.nasa.jpf.tool.GenPeer -m -a java.lang.StrictMath

generates the output

import gov.nasa.jpf.vm.MJIEnv;

import gov.nasa.jpf.vm.NativePeer;

public class JPF_java_lang_StrictMath extends NativePeer {

@MJI

public double floorOrCeil__DDDD__D (MJIEnv env,

int clsObjRef, double v0, double v1, double v2,

double v3) {

...

}

...

}
24/27



Native peers

To ensure that JPF uses the native peer, rather than the original
class, we need to add the native peer to the host JVMs classpath.

target=Sine

classpath=<folder containing Sine.class>

native_classpath=<folder containing \

JPF_java_lang_StrictMath.class>

25/27



jpf-nhandler

jpf-nhandler is an extension of JPF. It automatically delegates the
execution of methods from JPF to the host JVM.

https://bitbucket.org/nastaran/jpf-nhandler

26/27

https://bitbucket.org/nastaran/jpf-nhandler


jpf-nhandler

jpf-nhandler can be applied to the Sine app with the following
properties file.

@using=jpf-nhandler

target=Sine

classpath=<folder containing Sine.class>

nhandler.delegateUnhandledNative=true

27/27


