Midterm

When: Thursday March 1, 9:00-10:15

Where: Stong College, room 203

What: all the material covered before the reading week

Project proposal

Please submit your project proposal (worth 3%) before Wednesday February 28.

Concurrency EECS 4315

www.eecs.yorku.ca/course/4315/

Books

- Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes and Doug Lea. Java Concurrency in Practice. Addison-Wesley, 2006.
- Mary Campione, Kathy Walrath and Alison Huml. The Java Tutorial. Lesson: Threads: Doing Two or More Tasks At Once.
- James Gosling, Bill Joy, Guy L. Steele Jr., Gilad Bracha and Alex Buckley. The Java Language Specification. 2015.

Threads can exchange information by accessing and updating shared attributes.

Question

One thread executes

```
v = 1;

v = v + 1;

and another thread executes
```

v = 0;

What is the final value of v?

Threads can exchange information by accessing and updating shared attributes.

Question

One thread executes

```
v = 1;

v = v + 1;
```

and another thread executes

```
v = 0;
```

What is the final value of v?

Answer

0, 1 or 2. This example shows that concurrency gives rise to nondeterminism.

Question

One thread executes

```
v = v + 1;
```

and another thread executes

$$v = v + 1;$$

If the initial value of v is 0, then what is the final value of v?

Question

One thread executes

$$v = v + 1;$$

and another thread executes

$$v = v + 1;$$

If the initial value of v is 0, then what is the final value of v?

Answer

1 or 2.

Question

How can the final value of v be 1?

Question

How can the final value of v be 1?

Answer

The assignment v = v + 1 is not atomic.

Question

How can the final value of v be 1?

Answer

The assignment v = v + 1 is not atomic.

0: getstatic
3: iconst_1

4: iadd

5: putstatic

Question

One thread executes

```
v = 0;
```

and another thread executes

```
v = Long.MAX_VALUE;
```

How many different final values can v have?

Question

One thread executes

```
v = 0;
```

and another thread executes

```
v = Long.MAX_VALUE;
```

How many different final values can v have?

Answer

4.

Question

How can v have 4 different final values?

Question

How can v have 4 different final values?

Answer

The assignments v = 0 and $v = Long.MAX_VALUE$ may not be atomic (on 32 bit machines).

Thread creation

```
In Java, threads are created dynamically:
// create and initialize Thread object
Thread thread = new Thread();
// execute run method of Thread object concurrently
thread.start();
```

The class Thread is part of package java.lang (and, hence, does not need to be imported). Its API can be found at the URL

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html.

Thread API

- public Thread(String name)
 Initializes a new Thread object with the specified name as its name.
- public void start()
 Causes this thread to begin execution; the Java virtual machine calls the run method of this thread.
- public void run()
 This method does nothing and returns.

Printer

Question

Develop a Java class called **Printer** that is a **Thread** and prints its name 1000 times.

Question

Develop an app that creates two **Printers** with names 1 and 2 and run them concurrently.

Question

Develop an app that creates two **Printers** with names 1 and 2 and run them concurrently.

Question

What is the output of the app?

Question

Develop an app that creates two **Printers** with names 1 and 2 and run them concurrently.

Question

What is the output of the app?

Answer

A sequence of 1000 1's and 2's (arbitrarily interleaved). This example shows that concurrency gives rise to nondeterminism.

Question

What happens if we replace start with run in the app?

Question

What happens if we replace start with run in the app?

Answer

Lets try it.

Question

What happens if we replace start with run in the app?

Answer

Lets try it.

Answer

The output is a sequence of 1000 1's followed by 1000 2's

Java only supports single inheritance

The following is **not** allowed in Java.

public class Printer extends Applet, Thread

Thread creation

```
// create and initialize Runnable object
Runnable runnable = new ...();
// create and initialize Thread object
Thread thread = new Thread(runnable);
// execute run method of Runnable object concurrently
thread.start();
The interface Runnable is part of package java.lang (and, hence,
does not need to be imported). Its API can be found at the URL
https://docs.oracle.com/javase/8/docs/api/java/lang/
Runnable.html
```

Runnable is an interface

Runnable.

In Java, you cannot create instances of an interface.
public class Printer implements Runnable {
 ...
}
The assignment
Runnable printer = new Printer();
is valid since the class Printer implements the interface

Printer

Question

Develop a Java class called **Printer** that implements **Runnable** and prints the thread's name 1000 times.

Question

One thread prints 1 one. Another thread prints 1 two. How many different executions are there?

Question

One thread prints 1 one. Another thread prints 1 two. How many different executions are there?

Answer

2

Question

One thread prints 2 ones. Another thread prints 2 twos. How many different executions are there?

Question

One thread prints 2 ones. Another thread prints 2 twos. How many different executions are there?

Answer

6.

Question

One thread prints 3 ones. Another thread prints 3 twos. How many different executions are there?

Question

One thread prints 3 ones. Another thread prints 3 twos. How many different executions are there?

Answer

20.

Question

One thread prints 1000 ones. Another thread prints 1000 twos. How many different executions are there?

Question

One thread prints 1000 ones. Another thread prints 1000 twos. How many different executions are there?

Answer

6270342502293155911108976733963991149120.

Question

One thread prints 1000 ones. Another thread prints 1000 twos. How many different executions are there?

Question

One thread prints 1000 ones. Another thread prints 1000 twos. How many different executions are there?

$$\binom{2000}{1000} = \frac{2000!}{1000!1000!}$$

Question

One thread executes n instructions. Another thread executes n instructions. How many different executions are there?

Question

One thread executes n instructions. Another thread executes n instructions. How many different executions are there?

Answer

At most $\binom{2n}{n}$.

Question

One thread executes n instructions. Another thread executes n instructions. How many different executions are there?

Answer

At most $\binom{2n}{n}$.

Question

Can there be fewer?

Question

One thread executes n instructions. Another thread executes n instructions. How many different executions are there?

Answer

At most $\binom{2n}{n}$.

Question

Can there be fewer?

Answer

Yes. For example, if each instruction is x = 1 then there is only one execution.

Question

There are k threads. Each thread executes n instructions. How many different executions are there?

$$\binom{kn}{n}\binom{(k-1)n}{n}\cdots\binom{2n}{n}$$

$${\binom{kn}{n}} {\binom{(k-1)n}{n}} \cdots {\binom{2n}{n}}$$

$$= \frac{(kn)!}{n!((k-1)n)!} \frac{((k-1)n)!}{n!((k-2)n)!} \cdots \frac{(2n)!}{n!n!}$$

$$\binom{kn}{n} \binom{(k-1)n}{n} \cdots \binom{2n}{n}$$

$$= \frac{(kn)!}{n!((k-1)n)!} \frac{((k-1)n)!}{n!((k-2)n)!} \cdots \frac{(2n)!}{n!n!}$$

$$= \frac{(kn)!}{(n!)^k}$$

$$\binom{kn}{n} \binom{(k-1)n}{n} \cdots \binom{2n}{n}$$

$$= \frac{(kn)!}{n!((k-1)n)!} \frac{((k-1)n)!}{n!((k-2)n)!} \cdots \frac{(2n)!}{n!n!}$$

$$= \frac{(kn)!}{(n!)^k}$$

$$= \frac{(kn)(kn-1)\cdots(kn-n+1)}{n!} \cdots \frac{2n(2n-1)\cdot(n+1)}{n!} \frac{n!}{n!}$$

$$\binom{kn}{n} \binom{(k-1)n}{n} \cdots \binom{2n}{n}$$

$$= \frac{(kn)!}{n!((k-1)n)!} \frac{((k-1)n)!}{n!((k-2)n)!} \cdots \frac{(2n)!}{n!n!}$$

$$= \frac{(kn)!}{(n!)^k}$$

$$= \frac{(kn)(kn-1)\cdots(kn-n+1)}{n!} \cdots \frac{2n(2n-1)\cdot(n+1)}{n!} \frac{n!}{n!}$$

$$\geq \left(\frac{2n(2n-1)\cdot(n+1)}{n!}\right)^{k-1}$$

$$\binom{kn}{n} \binom{(k-1)n}{n} \cdots \binom{2n}{n}$$

$$= \frac{(kn)!}{n!((k-1)n)!} \frac{((k-1)n)!}{n!((k-2)n)!} \cdots \frac{(2n)!}{n!n!}$$

$$= \frac{(kn)!}{(n!)^k}$$

$$= \frac{(kn)(kn-1)\cdots(kn-n+1)}{n!} \cdots \frac{2n(2n-1)\cdot(n+1)}{n!} \frac{n!}{n!}$$

$$\geq \left(\frac{2n(2n-1)\cdot(n+1)}{n!}\right)^{k-1}$$

$$= \left(\frac{2n(2n-1)\cdot(n+1)}{n(n-1)\cdots2}\right)^{k-1}$$

$$\binom{kn}{n} \binom{(k-1)n}{n} \cdots \binom{2n}{n}$$

$$= \frac{(kn)!}{n!((k-1)n)!} \frac{((k-1)n)!}{n!((k-2)n)!} \cdots \frac{(2n)!}{n!n!}$$

$$= \frac{(kn)!}{(n!)^k}$$

$$= \frac{(kn)(kn-1)\cdots(kn-n+1)}{n!} \cdots \frac{2n(2n-1)\cdot(n+1)}{n!} \frac{n!}{n!}$$

$$\geq \left(\frac{2n(2n-1)\cdot(n+1)}{n!}\right)^{k-1}$$

$$= \left(\frac{2n(2n-1)\cdot(n+1)}{n(n-1)\cdots2}\right)^{k-1}$$

$$\geq n^{k-1}$$

Question

There are k threads. Each thread executes n instructions. How many different executions are there?

Answer

In the worst case, more than n^{k-1} .

Conclusion

The number of different executions may grow exponential in the number of threads.