
Concurrency
EECS 4315

www.eecs.yorku.ca/course/4315/

1/16

www.eecs.yorku.ca/course/4315/


Java code

public static void main(String[] args) {

Printer one = new Printer("1");

one.run();

}

2/16



Executions

Question

Draw the state-transition diagram.

3/16



Executions

4/16



Java code

public static void main(String[] args) {

Printer one = new Printer("1");

Printer two = new Printer("2");

one.start();

two.start();

}

5/16



Executions

Question

Draw the state-transition diagram.

6/16



Executions

7/16



Counter class

Problem

Implement the class Counter with attribute value, initialized to
zero, and the methods increment and decrement.

Question

Can multiple threads share a Counter object and use methods
such as increment and decrement concurrently?

Answer

No, as before, if two threads invoke increment concurrently, the
counter may only be incremented by one (rather than two).

8/16



Counter class

Problem

Implement the class Counter with attribute value, initialized to
zero, and the methods increment and decrement.

Question

Can multiple threads share a Counter object and use methods
such as increment and decrement concurrently?

Answer

No, as before, if two threads invoke increment concurrently, the
counter may only be incremented by one (rather than two).

8/16



Counter class

Problem

Implement the class Counter with attribute value, initialized to
zero, and the methods increment and decrement.

Question

Can multiple threads share a Counter object and use methods
such as increment and decrement concurrently?

Answer

No, as before, if two threads invoke increment concurrently, the
counter may only be incremented by one (rather than two).

8/16



Synchronized methods

Methods such as increment should be executed atomically. This
can be accomplished by declaring the method to be
synchronized.

A lock is associated with every object. For threads to execute a
synchronized method on such the object, first its lock needs to
be acquired.

public synchronized void increment() {

this.value++;

}

9/16



Synchronized methods

Methods such as increment should be executed atomically. This
can be accomplished by declaring the method to be
synchronized.

A lock is associated with every object. For threads to execute a
synchronized method on such the object, first its lock needs to
be acquired.

public synchronized void increment() {

this.value++;

}

9/16



Resource class

Problem

Implement the class Resource with attribute available,
initialized to true, and the methods acquire and release.

10/16



Wait and notify

The Object class contains the following three methods:

wait: causes the current thread to wait for this object’s lock
until another thread wakes it up.

notify: wakes up a single thread waiting on this object’s
lock; if there is more than one waiting, an arbitrary one is
chosen; if there are none, nothing is done.

notifyAll: wakes up all threads waiting on this objects lock.

Since every class extends the class Object, these methods are
available to every object.

11/16



Wait and notify

The Object class contains the following three methods:

wait: causes the current thread to wait for this object’s lock
until another thread wakes it up.

notify: wakes up a single thread waiting on this object’s
lock; if there is more than one waiting, an arbitrary one is
chosen; if there are none, nothing is done.

notifyAll: wakes up all threads waiting on this objects lock.

Since every class extends the class Object, these methods are
available to every object.

11/16



States of a thread

runnable scheduler running

blocked

waitnotify

12/16



User class

public class User extends Thread {

private Resource resource;

public User(Resource resource) {

super();

this.resource = resource;

}

public void run() {

super.run();

this.resource.acquire();

this.resource.release();

}

}

13/16



Main method

final Resource resource = new Resource();

final int USERS = 2;

final User[] users = new User[USERS];

for (int i = 0; i < USERS; i++) {

users[i] = new User(resource);

}

for (int i = 0; i < USERS; i++) {

users[i].start();

}

14/16



Configuration file

target=Main

classpath=<folder that contains Main.class>

listener=listeners.StateSpaceWithThreadInfo

native_classpath=<folder that contains

listener/StateSpaceWithThreadInfo.class>

15/16



State space

16/16


