Concurrency

EECS 4315

www.eecs.yorku.ca/course/4315/

1/16


www.eecs.yorku.ca/course/4315/

Java code

public static void main(String[] args) {
Printer one = new Printer("1i");
one.run();

}

2/16



Executions

Draw the state-transition diagram. I

3/16



Executions

4/16



Java code

public static void main(String[] args) {
Printer one = new Printer("1i");
Printer two new Printer("2");
one.start();
two.start();

}

5/16



Executions

Draw the state-transition diagram. I

6/16



Executions

7/16



Counter class

Problem

Implement the class Counter with attribute value, initialized to
zero, and the methods increment and decrement.

8/16



Counter class

Implement the class Counter with attribute value, initialized to
zero, and the methods increment and decrement.

Question

| A\

Can multiple threads share a Counter object and use methods
such as increment and decrement concurrently?

A\

8/16



Counter class

Implement the class Counter with attribute value, initialized to
zero, and the methods increment and decrement.

Question

| A\

Can multiple threads share a Counter object and use methods
such as increment and decrement concurrently?

\

No, as before, if two threads invoke increment concurrently, the
counter may only be incremented by one (rather than two).

8/16



Synchronized methods

Methods such as increment should be executed atomically. This
can be accomplished by declaring the method to be
synchronized.

A lock is associated with every object. For threads to execute a
synchronized method on such the object, first its lock needs to
be acquired.

9/16



Synchronized methods

Methods such as increment should be executed atomically. This
can be accomplished by declaring the method to be
synchronized.

A lock is associated with every object. For threads to execute a
synchronized method on such the object, first its lock needs to
be acquired.

public synchronized void increment() {
this.value++;

}

9/16



Resource class

Problem

Implement the class Resource with attribute available,
initialized to true, and the methods acquire and release.

10/16



Wait and notify

The Object class contains the following three methods:

wait: causes the current thread to wait for this object’s lock
until another thread wakes it up.

notify: wakes up a single thread waiting on this object's
lock; if there is more than one waiting, an arbitrary one is
chosen; if there are none, nothing is done.

notifyAll: wakes up all threads waiting on this objects lock.

11/16



Wait and notify

The Object class contains the following three methods:

@ wait: causes the current thread to wait for this object’s lock
until another thread wakes it up.

o notify: wakes up a single thread waiting on this object’s
lock; if there is more than one waiting, an arbitrary one is
chosen; if there are none, nothing is done.

@ notifyAll: wakes up all threads waiting on this objects lock.

Since every class extends the class Object, these methods are
available to every object.

11/16



States of a thread

blocked

12/16



User class

public class User extends Thread {
private Resource resource;

public User(Resource resource) {
super () ;
this.resource = resource;

}

public void run() {
super.run();
this.resource.acquire(Q);
this.resource.release();

+
}

13/16



final Resource resource = new Resource();

final int USERS = 2;

final User[] users = new User[USERS];

for (int i = 0; i < USERS; i++) {
users[i] = new User(resource);

}

for (int i = 0; i < USERS; i++) {
users[i].start();

}

14/16



Configuration file

target=Main

classpath=<folder that contains Main.class>

listener=listeners.StateSpaceWithThreadInfo

native_classpath=<folder that contains
listener/StateSpaceWithThreadInfo.class>

15/16



State space

16/16



