
Quiz 3

When: Friday March 9 at 10:00
Where: LAS 1004
What: the material covered in lecture 10–13

1/52

Senate policy

According to Senate Policy on the Academic Implications of
Disruptions or Cessations of University Business Due to Labour
Disputes or Other Causes “Students who do not participate in
academic activities because:

they are unable to do so owing to a Disruption, or

they choose not to participate in academic activities owing to
a strike or lock-out on campus

are entitled to immunity from penalty, to reasonable alternative
access to materials covered in their absence, to reasonable
extensions of deadlines and to such other remedy as Senate deems
necessary and consistent with the principle of academic integrity.”

2/52

http://secretariat-policies.info.yorku.ca/policies/academic-implications-of-disruptions-or-cessations-of-university-business-due-to-labour-disputes-or-other-causes-senate-policy-on-the/
http://secretariat-policies.info.yorku.ca/policies/academic-implications-of-disruptions-or-cessations-of-university-business-due-to-labour-disputes-or-other-causes-senate-policy-on-the/
http://secretariat-policies.info.yorku.ca/policies/academic-implications-of-disruptions-or-cessations-of-university-business-due-to-labour-disputes-or-other-causes-senate-policy-on-the/

Drop deadline

The drop deadline, originally March 9, will be moved to a later
date.

3/52

Concurrency
EECS 4315

www.eecs.yorku.ca/course/4315/

4/52

www.eecs.yorku.ca/course/4315/

Counter class

public class Counter extends Thread {

private int value;

public Counter() {

this.value = 0;

}

public void run() {

this.value++;

}

}

5/52

Counter class

public void run() {

this.value++;

}

0: aload_0

1: dup

2: getfield

5: iconst_1

6: iadd

7: putfield

10: return

6/52

The app

public class Main {

public static void main(String[] args) {

Counter one = new Counter();

Counter two = new Counter();

one.start();

two.start();

}

}

0: new 11: dup 20: aload_2

3: dup 12: invokespecial 21: invokevirtual

4: invokespecial 15: astore_2 24: return

7: astore_1 16: aload_1

8: new 17: invokevirtual

7/52

State-transition diagram

Question

Draw the corresponding state-transition diagram.

8/52

State-transition diagram

new dup invokespecial astore 1 new

9/52

State-transition diagram

dup invokespecial astore 2 aload 1 invokevirtual

10/52

Mini model

Combine the first ten transitions into one.

new . . . invokevirtual

The actions of the labelled transition system are sequences of
bytecode instructions.

11/52

State-transition diagram

new . . . invokevirtual

Next instructions for the main thread:

20: aload_2

21: invokevirtual

24: return

Next instructions for the thread one:

0: aload_0

1: dup

2: getfield

5: iconst_1

6: iadd

7: putfield

12/52

State-transition diagram

Question

Can the bytecode instructions corresponding to the run invocation
be modelled as a single transition?

Answer

Yes.

Question

Why?

Answer

Because the execution of this method does not impact the other
threads.

13/52

State-transition diagram

Question

Can the bytecode instructions corresponding to the run invocation
be modelled as a single transition?

Answer

Yes.

Question

Why?

Answer

Because the execution of this method does not impact the other
threads.

13/52

State-transition diagram

Question

Can the bytecode instructions corresponding to the run invocation
be modelled as a single transition?

Answer

Yes.

Question

Why?

Answer

Because the execution of this method does not impact the other
threads.

13/52

State-transition diagram

Question

Can the bytecode instructions corresponding to the run invocation
be modelled as a single transition?

Answer

Yes.

Question

Why?

Answer

Because the execution of this method does not impact the other
threads.

13/52

Combining bytecode instructions

We combine the first ten bytecode instructions since there is
only one thread.

We combine the bytecode instructions corresponding to the
run invocation because those do not impact the other threads.

General idea

Combine those bytecode instructions that do not impact other
threads.

14/52

Combining bytecode instructions

We combine the first ten bytecode instructions since there is
only one thread.

We combine the bytecode instructions corresponding to the
run invocation because those do not impact the other threads.

General idea

Combine those bytecode instructions that do not impact other
threads.

14/52

Combining bytecode instructions

Problem

Given all the (byte)code of a multi-threaded app, determine for a
specific bytecode instruction of a specific thread whether it
impacts other threads.

Question

Give an algorithm that solves the problem.

Answer

Impossible!

15/52

Combining bytecode instructions

Problem

Given all the (byte)code of a multi-threaded app, determine for a
specific bytecode instruction of a specific thread whether it
impacts other threads.

Question

Give an algorithm that solves the problem.

Answer

Impossible!

15/52

Combining bytecode instructions

Problem

Given all the (byte)code of a multi-threaded app, determine for a
specific bytecode instruction of a specific thread whether it
impacts other threads.

Question

Give an algorithm that solves the problem.

Answer

Impossible!

15/52

Proving impossibility

Question

Which other problems cannot be solved?

Answer

The halting problem: given code and input for that code,
determine whether the code terminates.

16/52

Proving impossibility

Question

Which other problems cannot be solved?

Answer

The halting problem: given code and input for that code,
determine whether the code terminates.

16/52

Proving impossibility

Problem

Given all the (byte)code of a multi-threaded app, determine for a
specific bytecode instruction of a specific thread whether it
impacts other threads.

Question

Explain (informally) why the problem cannot be solved.

17/52

Writer

public class Writer extends Thread {

public static boolean shared = false;

public void run() {

Writer.shared = true;

}

}

18/52

Writer

public class Reader extends Thread {

public void run() {

this.code();

if (Writer.shared) {

...

}

}

public void code() {

...

}

}

19/52

Main

public class Main {

public static void main(String[] args) {

Reader reader = new Reader();

Writer writer = new Writer();

reader.start();

writer.start();

}

}

20/52

Writer

Transitions of the Writer thread:

· · · putstatic return

Assume that the code method does not use the attribute
Writer.shared. Then the bytecode instruction putstatic of the
Writer thread impacts the Reader thread if and only if the
method call to code terminates.

21/52

Combining bytecode instructions

General idea

Combine those bytecode instructions for which we can prove that
they do not impact other threads.

The idea of combining consecutive transitions labelled with
invisible (outside the current thread) actions into a single
transition is due to Patrice Godefroid.

Examples of invisible actions

Reading or writing an attribute that can be proved to be not
shared.

Reading or writing a local variable.

. . .

22/52

Combining bytecode instructions

General idea

Combine those bytecode instructions for which we can prove that
they do not impact other threads.

The idea of combining consecutive transitions labelled with
invisible (outside the current thread) actions into a single
transition is due to Patrice Godefroid.

Examples of invisible actions

Reading or writing an attribute that can be proved to be not
shared.

Reading or writing a local variable.

. . .

22/52

Combining bytecode instructions

General idea

Combine those bytecode instructions for which we can prove that
they do not impact other threads.

The idea of combining consecutive transitions labelled with
invisible (outside the current thread) actions into a single
transition is due to Patrice Godefroid.

Examples of invisible actions

Reading or writing an attribute that can be proved to be not
shared.

Reading or writing a local variable.

. . .

22/52

Patrice Godefroid

Ph.D. degree in
Computer Science from
the University of Liege,
Belgium.

Worked at Bell
Laboratories.

Currently at Microsoft
Research.

Source: Patrice Godefroid

23/52

The readers-writers problem

The readers and writers problem, due to Courtois, Heymans and
Parnas, is a classical concurrency problem. It models access to a
database. There are many competing threads wishing to read from
and write to the database. It is acceptable to have multiple
threads reading at the same time, but if one thread is writing then
no other thread may either read or write. A thread can only write
if no thread is reading.

24/52

David Parnas

Canadian early pioneer of
software engineering.

Ph.D. from Carnegie
Mellon University.

Taught at the University
of North Carolina at
Chapel Hill, the
Technische Universität
Darmstadt, the
University of Victoria,
Queen’s University,
McMaster University, and
University of Limerick.

Won numerous awards
including ACM
SIGSOFT’s “Outstanding
Research” award.

Source: Hubert Baumeister

25/52

Pierre-Jacques Courtois

Professor emeritus at the
Catholic University of Leuven.

Source:

https://www.info.ucl.ac.be/~courtois/

26/52

https://www.info.ucl.ac.be/~courtois/

Reader class

public class Reader extends Thread {

private Database database;

public Reader(Database database) {

this.database = database;

}

public void run() {

this.database.read();

}

}

27/52

Writer class

public class Writer extends Thread {

private Database database;

public Writer(Database database) {

this.database = database;

}

public void run() {

this.database.write();

}

}

28/52

Database class

public class Database {

...

public Database() { ... }

public void read() { ... }

public void write() { ... }

}

29/52

Main class

final int READERS = 5;

final int WRITERS = 2;

Database database = new Database();

for (int r = 0; r < READERS; r++) {

(new Reader(database)).start();

}

for (int w = 0; w < WRITERS; w++) {

(new Writer(database)).start();

}

30/52

The readers-writers problem

Question

If we make both methods synchronized, does that solve the
problem?

Answer

Yes.

Question

Is it a satisfactory solution?

Answer

No.

31/52

The readers-writers problem

Question

If we make both methods synchronized, does that solve the
problem?

Answer

Yes.

Question

Is it a satisfactory solution?

Answer

No.

31/52

The readers-writers problem

Question

If we make both methods synchronized, does that solve the
problem?

Answer

Yes.

Question

Is it a satisfactory solution?

Answer

No.

31/52

The readers-writers problem

Question

If we make both methods synchronized, does that solve the
problem?

Answer

Yes.

Question

Is it a satisfactory solution?

Answer

No.

31/52

The readers-writers problem

Question

Why is it not satisfactory?

Answer

It does not allow multiple readers to read at the same time.

32/52

The readers-writers problem

Question

Why is it not satisfactory?

Answer

It does not allow multiple readers to read at the same time.

32/52

The readers-writers problem

Question

When does a reader have to wait until it can start reading?

Answer

When a writer is writing.

Question

When does a writer have to wait until it can start writing?

Answer

When another writer is writing or a reader is reading.

33/52

The readers-writers problem

Question

When does a reader have to wait until it can start reading?

Answer

When a writer is writing.

Question

When does a writer have to wait until it can start writing?

Answer

When another writer is writing or a reader is reading.

33/52

The readers-writers problem

Question

When does a reader have to wait until it can start reading?

Answer

When a writer is writing.

Question

When does a writer have to wait until it can start writing?

Answer

When another writer is writing or a reader is reading.

33/52

The readers-writers problem

Question

When does a reader have to wait until it can start reading?

Answer

When a writer is writing.

Question

When does a writer have to wait until it can start writing?

Answer

When another writer is writing or a reader is reading.

33/52

The attributes

Question

Of which type of information do we need to keep track so that we
can determine

whether a writer is writing, and

whether a writer is writing or a reader is reading.

Answer

Two booleans.

Question

What are appropriate names for these two attributes?

Answer

writing and reading.

34/52

The attributes

Question

Of which type of information do we need to keep track so that we
can determine

whether a writer is writing, and

whether a writer is writing or a reader is reading.

Answer

Two booleans.

Question

What are appropriate names for these two attributes?

Answer

writing and reading.

34/52

The attributes

Question

Of which type of information do we need to keep track so that we
can determine

whether a writer is writing, and

whether a writer is writing or a reader is reading.

Answer

Two booleans.

Question

What are appropriate names for these two attributes?

Answer

writing and reading.

34/52

The attributes

Question

Of which type of information do we need to keep track so that we
can determine

whether a writer is writing, and

whether a writer is writing or a reader is reading.

Answer

Two booleans.

Question

What are appropriate names for these two attributes?

Answer

writing and reading.

34/52

Initializing the attributes

Question

public class Database {

private boolean writing;

private boolean reading;

...

}

Where and how are the attributes writing and reading

initialized?

Answer

public Database() {

this.writing = false;

this.reading = false;

}

35/52

Initializing the attributes

Question

public class Database {

private boolean writing;

private boolean reading;

...

}

Where and how are the attributes writing and reading

initialized?

Answer

public Database() {

this.writing = false;

this.reading = false;

}

35/52

Waiting when a writer is writing

Question

In

public void read() {

...

\\ read

...

}

how do we express that a thread has to wait if a writer is writing?

Answer

if (this.writing) {

this.wait();

}

36/52

Waiting when a writer is writing

Question

In

public void read() {

...

\\ read

...

}

how do we express that a thread has to wait if a writer is writing?

Answer

if (this.writing) {

this.wait();

}

36/52

The wait method

The wait method throws an InterruptedException if any
thread interrupted the current thread before or while the current
thread was waiting for a notification.

Since an InterruptedException is a checked exception, it needs
to be specified or caught.

37/52

Catch the InterruptedException

public void read() {

if (this.writing) {

try {

this.wait();

} catch (InterruptedException e) {

e.printStackTrace();

}

}

\\ read

...

}

38/52

Specify the InterruptedException

public void read() throws InterruptedException {

if (this.writing) {

this.wait();

}

\\ read

...

}

39/52

The wait method

When invoking object.wait(), the current thread must own the
lock (or monitor) of object. If that is not the case, a
IllegalMonitorStateException is thrown.

Question

How can we ensure that the current thread owns the lock of the
database when executing wait within the read method?

40/52

Acquiring the lock of the database

private synchronized void beginRead() {

if (this.writing) {

try {

this.wait();

} catch (InterruptedException e) {

e.printStackTrace();

}

}

}

public void read() {

beginRead();

\\ read

...

}

41/52

The writing attribute

Question

Where and how do we modify the value of the attribute writing?

Answer

public void write() {

...

this.writing = true;

// write

this.writing = false;

...

}

42/52

The writing attribute

Question

Where and how do we modify the value of the attribute writing?

Answer

public void write() {

...

this.writing = true;

// write

this.writing = false;

...

}

42/52

Waiting when a reader is reading

Question

In

public void write() {

...

\\ write

...

}

how do we express that a thread has to wait if a writer is writing or
a reader is reading?

Answer

if (this.writing || this.reading) {

this.wait();

}

43/52

Waiting when a reader is reading

Question

In

public void write() {

...

\\ write

...

}

how do we express that a thread has to wait if a writer is writing or
a reader is reading?

Answer

if (this.writing || this.reading) {

this.wait();

}

43/52

The reading attribute

Question

Where and how do we modify the value of the attribute reading?

Answer

public void read() {

...

this.reading = true;

// read

this.reading = false;

...

}

Since multiple readers can read at the same time, we cannot set
the attribute reading to false after // read.

44/52

The reading attribute

Question

Where and how do we modify the value of the attribute reading?

Answer

public void read() {

...

this.reading = true;

// read

this.reading = false;

...

}

Since multiple readers can read at the same time, we cannot set
the attribute reading to false after // read.

44/52

The reading attribute

Question

Where and how do we modify the value of the attribute reading?

Answer

public void read() {

...

this.reading = true;

// read

this.reading = false;

...

}

Since multiple readers can read at the same time, we cannot set
the attribute reading to false after // read.

44/52

Waiting when a reader is reading

We need more fine-grained information than a boolean that
captures whether readers are reading. From this more fine-grained
information we should be able to derive whether readers are
reading.

Question

What type of more fine-grained information is needed?

Answer

int to keep track of the number of active readers.

Question

What is an appropriate name for this attribute?

Answer

readers.

45/52

Waiting when a reader is reading

We need more fine-grained information than a boolean that
captures whether readers are reading. From this more fine-grained
information we should be able to derive whether readers are
reading.

Question

What type of more fine-grained information is needed?

Answer

int to keep track of the number of active readers.

Question

What is an appropriate name for this attribute?

Answer

readers.

45/52

Waiting when a reader is reading

We need more fine-grained information than a boolean that
captures whether readers are reading. From this more fine-grained
information we should be able to derive whether readers are
reading.

Question

What type of more fine-grained information is needed?

Answer

int to keep track of the number of active readers.

Question

What is an appropriate name for this attribute?

Answer

readers.

45/52

Waiting when a reader is reading

We need more fine-grained information than a boolean that
captures whether readers are reading. From this more fine-grained
information we should be able to derive whether readers are
reading.

Question

What type of more fine-grained information is needed?

Answer

int to keep track of the number of active readers.

Question

What is an appropriate name for this attribute?

Answer

readers.

45/52

Waiting when a reader is reading

We need more fine-grained information than a boolean that
captures whether readers are reading. From this more fine-grained
information we should be able to derive whether readers are
reading.

Question

What type of more fine-grained information is needed?

Answer

int to keep track of the number of active readers.

Question

What is an appropriate name for this attribute?

Answer

readers.

45/52

Initializing the attributes

Question

public class Database {

private boolean writing;

private int readers;

...

}

Where and how are the attributes writing and readers

initialized?

Answer

public Database() {

this.writing = false;

this.readers = 0;

}

46/52

Initializing the attributes

Question

public class Database {

private boolean writing;

private int readers;

...

}

Where and how are the attributes writing and readers

initialized?

Answer

public Database() {

this.writing = false;

this.readers = 0;

}

46/52

Waiting when a reader is reading

Question

In

public void write() {

this.beginWrite();

...

}

how do we express that a thread has to wait if a writer is writing or
a reader is reading?

Answer

private synchronized void beginWrite() {

if (this.writing || this.readers > 0) {

try {

this.wait();

} catch (InterruptedException e) {

e.printStackTrace();

}

}

}

47/52

Waiting when a reader is reading

Question

In

public void write() {

this.beginWrite();

...

}

how do we express that a thread has to wait if a writer is writing or
a reader is reading?

Answer

private synchronized void beginWrite() {

if (this.writing || this.readers > 0) {

try {

this.wait();

} catch (InterruptedException e) {

e.printStackTrace();

}

}

}

47/52

The reading attribute

Question

Where and how do we modify the value of the attribute readers?

Answer

private synchronized void beginRead() {

...

this.readers++;

}

private synchronized void endRead() {

this.readers--;

}

48/52

The reading attribute

Question

Where and how do we modify the value of the attribute readers?

Answer

private synchronized void beginRead() {

...

this.readers++;

}

private synchronized void endRead() {

this.readers--;

}

48/52

Waking up waiting readers

Question

Readers may be waiting because a writer is writing. Where and
how do we “wake up” these waiting readers?

Answer

Use the notifyAll once the writer is done with writing.

49/52

Waking up waiting readers

Question

Readers may be waiting because a writer is writing. Where and
how do we “wake up” these waiting readers?

Answer

Use the notifyAll once the writer is done with writing.

49/52

Waking up waiting readers

private synchronized void endWrite() {

this.writing = false;

this.notifyAll(); // notify all threads that are

// waiting on this database

}

50/52

Waking up waiting writers

Question

Writers may be waiting because a writer is writing or readers are
reading. Where and how do we “wake up” a waiting writer?

Answer

Use the notifyAll once the last reader is done with reading.

51/52

Waking up waiting writers

Question

Writers may be waiting because a writer is writing or readers are
reading. Where and how do we “wake up” a waiting writer?

Answer

Use the notifyAll once the last reader is done with reading.

51/52

Waking up waiting writers

private synchronized void endRead() {

this.readers--:

if (this.readers == 0) {

this.notifyAll(); // notify all threads that are

// waiting on this database

}

}

52/52

Correct?

Question

Is the developed class Database correct?

Answer

Maybe.

In the next lecture, we will use JPF to hunt for bugs in the
Database class.

53/52

Correct?

Question

Is the developed class Database correct?

Answer

Maybe.

In the next lecture, we will use JPF to hunt for bugs in the
Database class.

53/52

Correct?

Question

Is the developed class Database correct?

Answer

Maybe.

In the next lecture, we will use JPF to hunt for bugs in the
Database class.

53/52

