CTL model checking EECS 4315

www.eecs.yorku.ca/course/4315/

The course evaluation can be completed here.

The formulas are defined by

$$f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$$

www.eecs.yorku.ca/course/4315/ EECS 4315

<ロ> <四> <四> <四> <三</td>

Semantics of CTL

 $s \models a$ iff $a \in \ell(s)$ $s \models f_1 \land f_2$ iff $s \models f_1$ and $s \models f_2$ $s \models \neg f$ iff $not(s \models f)$ $s \models \exists \bigcirc f \text{ iff } \exists p \in Paths(s) : p[1] \models f$ $s \models \exists (f_1 \cup f_2) \text{ iff } \exists p \in Paths(s) :$ $\exists i > 0 : p[i] \models f_2$ and $\forall 0 < i < i : p[i] \models f_1$ $s \models \forall \bigcirc f \text{ iff } \forall p \in Paths(s) : p[1] \models f$ $s \models \forall (f_1 \cup f_2) \text{ iff } \forall p \in Paths(s) :$ $\exists i > 0 : p[i] \models f_2$ and $\forall 0 < i < i : p[i] \models f_1$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ の々で

Question

How to express "Each red light is preceded by a green light" in CTL?

Answer

```
\neg \text{red} \land \forall \Box (\text{green} \lor \forall \bigcirc \neg \text{red})
```

э

(신문) (문)

 $\langle \Box \rangle \langle \Box \rangle$

Question

How to express "The light is infinitely often green" in CTL?

э

ヘロト 人間 ト 人臣 ト 人臣 ト

Question

How to express "The light is infinitely often green" in CTL?

Answer

∀⊟∀⊘green

э

ヘロト 人間 ト 人臣 ト 人臣 ト

Question		
Recall that		
	$\exists \Diamond f = \exists (true \ U \ f).$	
How is		
	$m{s}\models\exists\Diamond f$	
defined?		

▲ロト ▲御 と ▲注 と ▲注 と 一注

Question		
Recall that		
	$\exists \Diamond f = \exists (true \cup f).$	
How is		
1100013	$s \vdash \exists \land f$	
defined?		

Answer

$$\exists p \in Paths(s) : \exists i \geq 0 : p[i] \models f.$$

æ

イロト イロト イヨト イヨト

Question		
Recall that		
	$\forall \Diamond f = \forall (true U f)$	
How is		
	$oldsymbol{s}\models orall \Diamond oldsymbol{f}$	
defined?		

æ

イロト イロト イヨト イヨト

Question		
Recall that		
	$\forall \Diamond f = \forall (true U f)$	
How is		
	$oldsymbol{s}\models orall \Diamond f$	
defined?		

Answer

$$\forall p \in Paths(s) : \exists i \geq 0 : p[i] \models f.$$

æ

æ

<ロト < 回 > < 注 > < 注 > .

Answer

$$\exists p \in Paths(s) : \forall i \geq 0 : p[i] \models f.$$

æ

イロト イロト イヨト イヨト

æ

・ロト ・ 同ト ・ ヨト ・ ヨト

Answer

$$\forall p \in Paths(s) : \forall i \geq 0 : p[i] \models f.$$

æ

ヘロト 人間 とくほ とくほ とう

Theorem

The property

 $\forall p \in Paths(TS) : \forall m \ge 0 : \exists p' \in Paths(p[m]) : \exists n \ge 0 : p'[n] \models a$

cannot be captured by LTL, but is captured by the CTL formula $\forall \Box \exists \Diamond a$.

э

ヨトメヨトー

Theorem

The property

$$\forall p \in Paths(TS) : \exists i \geq 0 : \forall j \geq i : p[j..] \models a$$

cannot be captured by CTL, but is captured by the LTL formula $\Diamond \Box a$.

э

 $\langle \Box \rangle \langle \Box \rangle$

★ E ► ★ E ►

Basic idea

Compute Sat(f) by recursion on the structure of f.

 $TS \models f \text{ iff } I \subseteq Sat(f).$

Alternative view

Label each state with the subformulas of f that it satisfies.

3

イロト イポト イヨト イヨト

Definition

The formulas are defined by

$$f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$$

Question

What is *Sat(a)*?

æ

ヘロト 人間 ト 人臣 ト 人臣 ト

Definition

The formulas are defined by

$$f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$$

Question

What is Sat(a)?

Answer

$$Sat(a) = \{ s \in S \mid a \in \ell(s) \}$$

Alternative view

Label each state *s* satisfying $a \in \ell(s)$ with *a*.

トメヨト

• • • • • • • •

green

æ

イロト イロト イヨト イヨト

green

$$\begin{array}{rrrr} \mathbf{1} & \mapsto & \emptyset \\ \mathbf{2} & \mapsto & \{\text{green}\} \\ \mathbf{3} & \mapsto & \{\text{green}\} \end{array}$$

www.eecs.yorku.ca/course/4315/ EECS 4315

æ

ヘロト 人間 とくほとくほとう

Definition

The formulas are defined by

$$f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$$

Question

What is $Sat(f_1 \wedge f_2)$?

æ

 $\langle \Box \rangle \langle \Box \rangle$

(* E) * E)

Definition

The formulas are defined by

$$f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$$

Question

What is $Sat(f_1 \wedge f_2)$?

Answer

$$Sat(f_1 \wedge f_2) = Sat(f_1) \cap Sat(f_2)$$

Alternative view

Label states, that are labelled with both f_1 and f_2 , also with $f_1 \wedge f_2$.

э

・ロ と く 聞 と く 思 と く 思 と

green \land purple

æ

<ロト < 回 > < 注 > < 注 > .

green \land purple

www.eecs.yorku.ca/course/4315/ EECS 4315

æ

<ロト < 回 > < 注 > < 注 > .

Definition

The formulas are defined by

$$f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$$

Question

What is $Sat(\neg f)$?

æ

・ロト ・ 同ト ・ ヨト ・ ヨト

Definition

The formulas are defined by

$$f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$$

Question

What is $Sat(\neg f)$?

Answer

$$Sat(\neg f) = S \setminus Sat(f)$$

Alternative view

Label each state, that is not labelled with f, with $\neg f$.

ヘロト 人間 とくほ とくほとう

\neg (green \land purple)

æ

ヘロト 人間 とくほ とくほ とう

\neg (green \land purple)

- 1 \mapsto {purple, \neg (green \land purple)}
- 2 \mapsto {green, \neg (green \land purple)}
- $\textbf{3} \hspace{0.1 in} \mapsto \hspace{0.1 in} \{ green, purple, green \land purple \}$

э

Definition

The formulas are defined by

$$f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$$

Question

What is $Sat(\exists \bigcirc f)$?

æ

・ロト ・ 同ト ・ ヨト ・ ヨト

Definition

The formulas are defined by

$$f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$$

Question

What is $Sat(\exists \bigcirc f)$?

Answer

$$Sat(\exists \bigcirc f) = \{ s \in S \mid Post(s) \cap Sat(f) \neq \emptyset \}$$
 where $Post(s) = \{ s' \in S \mid s \rightarrow s' \}.$

Alternative view

Labels those states, that have a direct successor labelled with f, also with $\exists \bigcirc f$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\begin{array}{rcl} 1 & \mapsto & \{ \exists \bigcirc \texttt{green} \} \\ 2 & \mapsto & \{\texttt{green}, \exists \bigcirc \texttt{green} \} \\ 3 & \mapsto & \{\texttt{green} \} \end{array}$$

www.eecs.yorku.ca/course/4315/ EECS 4315

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The formulas are defined by

$$f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$$

Question

What is $Sat(\exists (f_1 \cup f_2))?$

æ

・ロト ・ 同ト ・ ヨト ・ ヨト

$$s \in Sat(\exists (f_1 \cup f_2))$$

iff
$$s \models \exists (f_1 \cup f_2)$$

iff
$$s \models f_2 \lor (s \models f_1 \land \exists s \to t : t \models \exists (f_1 \cup f_2))$$

- iff $s \in Sat(f_2) \lor (s \in Sat(f_1) \land \exists t \in Post(s) : t \in Sat(\exists (f_1 \cup f_2))$
- iff $s \in Sat(f_2) \cup \{ s \in Sat(f_1) \mid Post(s) \cap Sat(\exists (f_1 \cup f_2)) \neq \emptyset \}$

イロト (過) (ほ) (ほ)

$$s \in Sat(\exists (f_1 \cup f_2))$$

iff
$$s \models \exists (f_1 \cup f_2)$$

iff
$$s \models f_2 \lor (s \models f_1 \land \exists s \to t : t \models \exists (f_1 \cup f_2))$$

- iff $s \in Sat(f_2) \lor (s \in Sat(f_1) \land \exists t \in Post(s) : t \in Sat(\exists (f_1 \cup f_2))$
- iff $s \in Sat(f_2) \cup \{ s \in Sat(f_1) \mid Post(s) \cap Sat(\exists (f_1 \cup f_2)) \neq \emptyset \}$

Proposition

 $Sat(\exists (f_1 \cup f_2))$ is the smallest subset T of S such that

$$T = Sat(f_2) \cup \{ s \in Sat(f_1) \mid Post(s) \cap T \neq \emptyset \}.$$

э

イロト イ理ト イヨト

$$s \in Sat(\exists (f_1 \cup f_2))$$

iff
$$s \models \exists (f_1 \cup f_2)$$

iff
$$s \models f_2 \lor (s \models f_1 \land \exists s \to t : t \models \exists (f_1 \cup f_2))$$

- iff $s \in Sat(f_2) \lor (s \in Sat(f_1) \land \exists t \in Post(s) : t \in Sat(\exists (f_1 \cup f_2))$
- $iff \quad s \in Sat(f_2) \cup \{ s \in Sat(f_1) \mid Post(s) \cap Sat(\exists (f_1 \cup f_2)) \neq \emptyset \}$

Proposition

 $Sat(\exists (f_1 \cup f_2))$ is the smallest subset T of S such that

$$T = Sat(f_2) \cup \{ s \in Sat(f_1) \mid Post(s) \cap T \neq \emptyset \}.$$

Question

Does such a smallest subset exist?

The function $F: 2^S \rightarrow 2^S$ is defined by

 $F(T) = Sat(f_2) \cup \{ s \in Sat(f_1) \mid Post(s) \cap T \neq \emptyset \}.$

Definition

A function $G : 2^S \to 2^S$ is monotone if for all $T, U \in 2^S$, if $T \subseteq U$ then $G(T) \subseteq G(U)$.

3

イロト イポト イヨト イヨト

Proposition

F is monotone.

Proof

Let $T, U \in 2^{S}$. Assume that $T \subseteq U$. Let $s \in F(T)$. It remains to prove that $s \in F(U)$. Then $s \in Sat(f_2)$ or $s \in Sat(f_1)$ and $Post(s) \cap T \neq \emptyset$. We distinguish two cases.

• If
$$s \in Sat(f_2)$$
 then $s \in F(U)$.

• If $s \in Sat(f_1)$ and $Post(s) \cap T \neq \emptyset$ then $Post(s) \cap U \neq \emptyset$ since $T \subseteq U$. Hence, $s \in F(U)$.

For each $n \in \mathbb{N}$, the set F_n is defined by

$$F_n = \begin{cases} \emptyset & \text{if } n = 0\\ F(F_{n-1}) & \text{otherwise} \end{cases}$$

æ

프 () (프 ())

Proposition

For all $n \in \mathbb{N}$, $F_n \subseteq F_{n+1}$.

Proof

We prove this by induction on *n*. In the base case, n = 0, we have that

$$F_0 = \emptyset \subseteq F_1.$$

In the inductive case, we have n > 1. By induction, $F_{n-1} \subseteq F_n$. Since *F* is monotone, we have that

$$F_n = F(F_{n-1}) \subseteq F(F_n) = F_{n+1}.$$

э

Proposition

If *S* is a finite set. then $F_n = F_{n+1}$ for some $n \in \mathbb{N}$.

Proof

Suppose that *S* contains *m* elements. Towards a contradiction, assume that $F_n \neq F_{n+1}$ for all $n \in \mathbb{N}$. Then $F_n \subset F_{n+1}$ for all $n \in \mathbb{N}$. Hence, F_n contains at least *n* elements. Therefore, F_{m+1} contains more elements than *S*. This contradicts that $F_{m+1} \subseteq S$.

We denote the F_n with $F_n = F_{n+1}$ by fix(F).

프 🖌 🖉 🕞 👘 프

Smallest Subset

Proposition

For all
$$T \subseteq S$$
, if $F(T) = T$ then $fix(F) \subseteq T$.

Proof

First, we prove that for all $n \in \mathbb{N}$, $F_n \subseteq T$ by induction on n. In the base case, n = 0, we have that

$$F_0 = \emptyset \subseteq T.$$

In the inductive case, we have n > 1. By induction, $F_{n-1} \subseteq T$. By induction

$$F_n = F(F_{n-1}) \subseteq F(T) = T.$$

Since $fix(F) = F_n$ for some $n \in \mathbb{N}$, we can conclude that $fix(F) \subseteq T$.

Corollary

fix(F) is the smallest T of S such that F(T) = T.

æ

ヘロト 人間 とくほ とくほ とう

. . .

Sat(f): switch (f): a : return { $s \in S \mid a \in \ell(s)$ } $f_1 \wedge f_2$: return $Sat(f_1) \cap Sat(f_2)$ $\neg f$: return $S \setminus Sat(f)$ $\exists \bigcirc f$: return { $s \in S \mid Post(s) \cap Sat(f) \neq \emptyset$ } $\exists (f_1 \cup f_2) : T := \emptyset$ while $T \neq F(T)$ T := F(T)return T

where $F(T) = Sat(f_2) \cup \{ s \in Sat(f_1) \mid Post(s) \cap T \neq \emptyset \}.$

3

ヘロト 人間 ト 人目 ト 人目 トー

Sat(f): switch (f): . . . $\exists (f_1 \cup f_2) : E := Sat(f_2)$ T := Ewhile $E \neq \emptyset$ let $t \in E$ $E := E \setminus \{t\}$ for all $s \in Pre(t)$ if $s \in Sat(f) \setminus T$ $E := E \cup \{s\}$ $T := T \cup \{s\}$ return T

where $Pre(t) = \{ s \in S \mid s \rightarrow t \}.$

イロト イ理ト イヨト

The formulas are defined by

$$f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$$

Question

What is *Sat*($\forall \bigcirc f$)?

æ

 $\langle \Box \rangle \langle \Box \rangle$

(* E) * E)

The formulas are defined by

$$f ::= \mathbf{a} \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$$

Question

What is *Sat*($\forall \bigcirc f$)?

Answer

$$Sat(\forall \bigcirc f) = \{ s \in S \mid Post(s) \subseteq Sat(f) \}.$$

æ

ヨトイヨト

 $\langle \Box \rangle \langle \Box \rangle$

The formulas are defined by

$$f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$$

Question

What is *Sat*(\forall ($f_1 \cup f_2$))?

æ

ヘロト 人間 ト 人臣 ト 人臣 ト

- $s \in Sat(\forall (f_1 \cup f_2))$
 - iff $s \models \forall (f_1 \cup f_2)$
 - iff $s \models f_2 \lor (s \models f_1 \land \forall s \to t : t \models \forall (f_1 \cup f_2))$
 - iff $s \in Sat(f_2) \lor (s \in Sat(f_1) \land \forall t \in Post(s) : t \in Sat(\forall (f_1 \cup f_2)))$
 - iff $s \in Sat(f_2) \cup \{ s \in Sat(f_1) \mid Post(s) \subseteq Sat(\forall (f_1 \cup f_2)) \}$

э

イロト 不得 とくほ とくほ とう

$$s \in Sat(\forall (f_1 \cup f_2))$$

iff
$$s \models \forall (f_1 \cup f_2)$$

iff
$$s \models f_2 \lor (s \models f_1 \land \forall s \to t : t \models \forall (f_1 \cup f_2))$$

- iff $s \in Sat(f_2) \lor (s \in Sat(f_1) \land \forall t \in Post(s) : t \in Sat(\forall (f_1 \cup f_2)))$
- iff $s \in Sat(f_2) \cup \{ s \in Sat(f_1) \mid Post(s) \subseteq Sat(\forall (f_1 \cup f_2)) \}$

Proposition

 $Sat(\forall (f_1 \cup f_2))$ is the smallest subset T of S such that

$$T = Sat(f_2) \cup \{ s \in Sat(f_1) \mid Post(s) \subseteq T \}.$$

э

イロト イヨト イヨト

$$s \in Sat(\forall (f_1 \cup f_2))$$

iff
$$s \models \forall (f_1 \cup f_2)$$

iff
$$s \models f_2 \lor (s \models f_1 \land \forall s \to t : t \models \forall (f_1 \cup f_2))$$

- iff $s \in Sat(f_2) \lor (s \in Sat(f_1) \land \forall t \in Post(s) : t \in Sat(\forall (f_1 \cup f_2))$
- $iff \quad s \in Sat(f_2) \cup \{ s \in Sat(f_1) \mid Post(s) \subseteq Sat(\forall (f_1 \cup f_2)) \}$

Proposition

 $Sat(\forall (f_1 \cup f_2))$ is the smallest subset T of S such that

$$T = Sat(f_2) \cup \{ s \in Sat(f_1) \mid Post(s) \subseteq T \}.$$

Question

Does such a smallest subset exist?

Size of a CTL formula

$$|a| = 1$$

$$|f_1 \wedge f_2| = 1 + |f_1| + |f_2|$$

$$|\neg f| = 1 + |f|$$

$$|\exists \bigcirc f| = 1 + |f|$$

$$|\forall \bigcirc f| = 1 + |f|$$

$$|\exists \bigcirc (f_1 \cup f_2)| = 1 + |f_1| + |f_2|$$

$$|\forall \bigcirc (f_1 \cup f_2)| = 1 + |f_1| + |f_2|$$

www.eecs.yorku.ca/course/4315/ EECS 4315

æ

ヘロト 人間 とくほ とくほ とう

Time Complexity of CTL Model Checking

By improving the model checking algorithm (see, for example the textbook of Baier and Katoen for details), we obtain

Theorem

For a transition system *TS*, with *N* states and *K* transitions, and a CTL formula *f*, the model checking problem $TS \models f$ can be decided in time $O((N + K) \cdot |f|)$.

Time Complexity of CTL Model Checking

By improving the model checking algorithm (see, for example the textbook of Baier and Katoen for details), we obtain

Theorem

For a transition system *TS*, with *N* states and *K* transitions, and a CTL formula *f*, the model checking problem $TS \models f$ can be decided in time $\mathcal{O}((N + K) \cdot |f|)$.

Theorem

For a transition system *TS*, with *N* states and *K* transitions, and a LTL formula *g*, the model checking problem $TS \models g$ can be decided in time $\mathcal{O}((N + K) \cdot 2^{|g|})$.

Time Complexity of CTL Model Checking

By improving the model checking algorithm (see, for example the textbook of Baier and Katoen for details), we obtain

Theorem

For a transition system *TS*, with *N* states and *K* transitions, and a CTL formula *f*, the model checking problem $TS \models f$ can be decided in time $\mathcal{O}((N + K) \cdot |f|)$.

Theorem

For a transition system *TS*, with *N* states and *K* transitions, and a LTL formula *g*, the model checking problem $TS \models g$ can be decided in time $\mathcal{O}((N + K) \cdot 2^{|g|})$.

Theorem

If $P \neq NP$ then there exist LTL formulas g_n whose size is a polynomial in n, for which equivalent CTL formulas exist, but not of size polynomial in n.