CTL model checking
 EECS 4315

www.eecs.yorku.ca/course/4315/

Course evaluation

The course evaluation can be completed here.

CTL

Definition

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \exists(f \cup f)|\forall \bigcirc f| \forall(f \cup f)
$$

$$
\begin{array}{rll}
s \models a & \text { iff } & a \in \ell(s) \\
s \models f_{1} \wedge f_{2} & \text { iff } & s \models f_{1} \text { and } s \models f_{2} \\
s \models \neg f & \text { iff } & \operatorname{not}(s \models f) \\
s \models \exists \bigcirc f & \text { iff } & \exists p \in \operatorname{Paths}(s): p[1] \models f \\
s \models \exists\left(f_{1} \cup f_{2}\right) & \text { iff } & \exists p \in \operatorname{Paths}(s): \\
& & \exists i \geq 0: p[i] \models f_{2} \text { and } \forall 0 \leq j<i: p[j] \models f_{1} \\
s \models \forall \bigcirc f & \text { iff } & \forall p \in \operatorname{Paths}(s): p[1] \models f \\
s \models \forall\left(f_{1} \cup f_{2}\right) & \text { iff } & \forall p \in \operatorname{Paths}(s): \\
& & \exists i \geq 0: p[i] \models f_{2} \text { and } \forall 0 \leq j<i: p[j] \models f_{1}
\end{array}
$$

Example

Question

How to express "Each red light is preceded by a green light" in CTL?

Answer
 \neg red $\wedge \forall \square($ green $\vee \forall \bigcirc \neg$ red $)$

Example

Question

How to express "The light is infinitely often green" in CTL?

Example

Question

How to express "The light is infinitely often green" in CTL?

Answer
$\forall \square \forall \Delta$ green

Semantics of CTL

Question
Recall that

$$
\exists \diamond f=\exists(\text { true } \cup f)
$$

How is

$$
s \models \exists \diamond f
$$

defined?

Semantics of CTL

Question
Recall that

$$
\exists \diamond f=\exists(\text { true } \cup f)
$$

How is

$$
s \models \exists \diamond f
$$

defined?

Answer

$$
\exists p \in \operatorname{Paths}(s): \exists i \geq 0: p[i] \models f
$$

Semantics of CTL

Question
Recall that

$$
\forall \diamond f=\forall(\text { true } \cup f)
$$

How is

$$
s \models \forall \diamond f
$$

defined?

Semantics of CTL

Question
Recall that

$$
\forall \diamond f=\forall(\text { true } \cup f)
$$

How is

$$
s \models \forall \diamond f
$$

defined?

Answer

$$
\forall p \in \operatorname{Paths}(s): \exists i \geq 0: p[i] \models f
$$

Semantics of CTL

Question
Recall that

$$
\exists \square f=\neg \forall(\text { true } U \neg f)
$$

How is

$$
\boldsymbol{s} \models \exists \square f
$$

defined?

Semantics of CTL

Question
Recall that

$$
\exists \square f=\neg \forall(\text { true } U \neg f)
$$

How is

$$
\boldsymbol{s} \models \exists \square f
$$

defined?

Answer

$$
\exists p \in \operatorname{Paths}(s): \forall i \geq 0: p[i] \models f
$$

Semantics of CTL

Question
Recall that

$$
\forall \square f=\neg \exists(\text { true } \cup \neg f)
$$

How is

$$
\boldsymbol{s} \models \forall \square f
$$

defined?

Semantics of CTL

Question
Recall that

$$
\forall \square f=\neg \exists(\text { true } U \neg f)
$$

How is

$$
\boldsymbol{s} \models \forall \square f
$$

defined?

Answer

$$
\forall p \in \operatorname{Paths}(s): \forall i \geq 0: p[i] \models f .
$$

Expressiveness of LTL and CTL

Theorem
The property
$\forall p \in \operatorname{Paths}(T S): \forall m \geq 0: \exists p^{\prime} \in \operatorname{Paths}(p[m]): \exists n \geq 0: p^{\prime}[n] \models a$
cannot be captured by LTL, but is captured by the CTL formula $\forall \square \exists \diamond a$.

Expressiveness of LTL and CTL

Theorem

The property

$$
\forall p \in \operatorname{Paths}(T S): \exists i \geq 0: \forall j \geq i: p[j . .] \vDash a
$$

cannot be captured by CTL, but is captured by the LTL formula $\diamond \square a$.

Model checking CTL

Basic idea

Compute Sat (f) by recursion on the structure of f.
$T S \models f$ iff $I \subseteq \operatorname{Sat}(f)$.
Alternative view
Label each state with the subformulas of f that it satisfies.

Model checking CTL

Definition

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \exists(f \cup f)|\forall \bigcirc f| \forall(f \cup f)
$$

Question

What is $\operatorname{Sat}(a)$?

Model checking CTL

Definition

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \exists(f \cup f)|\forall \bigcirc f| \forall(f \cup f)
$$

Question

What is $\operatorname{Sat}(a)$?

Answer

$\operatorname{Sat}(a)=\{s \in S \mid a \in \ell(s)\}$

Alternative view

Label each state s satisfying $a \in \ell(s)$ with a.

Example

green

Example

green

Model checking CTL

Definition

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \exists(f \cup f)|\forall \bigcirc f| \forall(f \cup f)
$$

Question
What is $\operatorname{Sat}\left(f_{1} \wedge f_{2}\right)$?

Model checking CTL

Definition

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \exists(f \cup f)|\forall \bigcirc f| \forall(f \cup f)
$$

Question
What is $\operatorname{Sat}\left(f_{1} \wedge f_{2}\right)$?
Answer

$$
\operatorname{Sat}\left(f_{1} \wedge f_{2}\right)=\operatorname{Sat}\left(f_{1}\right) \cap \operatorname{Sat}\left(f_{2}\right)
$$

Alternative view

Label states, that are labelled with both f_{1} and f_{2}, also with $f_{1} \wedge f_{2}$.

Example

green \wedge purple

Example

green \wedge purple

Model checking CTL

Definition

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \exists(f \cup f)|\forall \bigcirc f| \forall(f \cup f)
$$

Question

What is $\operatorname{Sat}(\neg f)$?

Model checking CTL

Definition

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \exists(f \cup f)|\forall \bigcirc f| \forall(f \cup f)
$$

Question

What is $\operatorname{Sat}(\neg f)$?

Answer

$\operatorname{Sat}(\neg f)=S \backslash \operatorname{Sat}(f)$

Alternative view

Label each state, that is not labelled with f, with $\neg f$.

Example

\neg (green \wedge purple)

Example

$\neg($ green \wedge purple)

$1 \mapsto \quad\{$ purple, $\neg($ green \wedge purple $)\}$
$2 \mapsto$ \{green, \neg (green \wedge purple) $\}$
$3 \mapsto$ \{green, purple, green \wedge purple $\}$

Model checking CTL

Definition

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \exists(f \cup f)|\forall \bigcirc f| \forall(f \cup f)
$$

Question

What is $\operatorname{Sat}(\exists \bigcirc f)$?

Model checking CTL

Definition

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \exists(f \cup f)|\forall \bigcirc f| \forall(f \cup f)
$$

Question

What is $\operatorname{Sat}(\exists \bigcirc f)$?

Answer

$\operatorname{Sat}(\exists \bigcirc f)=\{s \in S \mid \operatorname{Post}(s) \cap \operatorname{Sat}(f) \neq \emptyset\}$ where $\operatorname{Post}(s)=\left\{s^{\prime} \in S \mid s \rightarrow s^{\prime}\right\}$.

Alternative view

Labels those states, that have a direct successor labelled with f, also with $\exists \bigcirc f$.

Example

$\exists \bigcirc$ green

Example

$\exists \bigcirc$ green

$$
\begin{aligned}
1 & \mapsto\{\exists \bigcirc \text { green }\} \\
2 & \mapsto\{\text { green, } \exists \bigcirc \text { green }\} \\
3 & \mapsto\{\text { green }\}
\end{aligned}
$$

Model checking CTL

Definition

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \exists(f \cup f)|\forall \bigcirc f| \forall(f \cup f)
$$

Question
What is $\operatorname{Sat}\left(\exists\left(f_{1} \cup f_{2}\right)\right)$?

Model checking CTL

```
s\inSat(\exists(\mp@subsup{f}{1}{}\cup\mp@subsup{f}{2}{}))
    iff s}=\exists(\mp@subsup{f}{1}{}\cup\mp@subsup{f}{2}{}
    iff s}=\mp@subsup{f}{2}{}\vee(s\models\mp@subsup{f}{1}{}\wedge\existss->t:t\models\exists(\mp@subsup{f}{1}{}\cup\mp@subsup{f}{2}{})
    iff }s\in\operatorname{Sat}(\mp@subsup{f}{2}{})\vee(s\in\operatorname{Sat}(\mp@subsup{f}{1}{})\wedge\existst\in\operatorname{Post}(s):t\in\operatorname{Sat}(\exists(\mp@subsup{f}{1}{}\cup\mp@subsup{f}{2}{})
    iff s\inSat(f}\mp@subsup{f}{2}{})\cup{s\in\operatorname{Sat}(\mp@subsup{f}{1}{})|\operatorname{Post}(s)\cap\operatorname{Sat}(\exists(\mp@subsup{f}{1}{}\cup\mp@subsup{f}{2}{}))\not=\emptyset
```


Model checking CTL

```
s\inSat(\exists(\mp@subsup{f}{1}{}\cup\mp@subsup{f}{2}{}))
    iff s}=\exists(\mp@subsup{f}{1}{}\cup\mp@subsup{f}{2}{}
    iff s}=\mp@subsup{f}{2}{}\vee(s\models\mp@subsup{f}{1}{}\wedge\existss->t:t\models\exists(\mp@subsup{f}{1}{}\cup\mp@subsup{f}{2}{})
    iff s\inSat(f2)}\(s\in\operatorname{Sat}(\mp@subsup{f}{1}{})\wedge\existst\in\operatorname{Post}(s):t\in\operatorname{Sat}(\exists(\mp@subsup{f}{1}{}\cup\mp@subsup{f}{2}{})
    iff s\inSat(f
```


Proposition

$\operatorname{Sat}\left(\exists\left(f_{1} \cup f_{2}\right)\right)$ is the smallest subset T of S such that

$$
T=\operatorname{Sat}\left(f_{2}\right) \cup\left\{s \in \operatorname{Sat}\left(f_{1}\right) \mid \operatorname{Post}(s) \cap T \neq \emptyset\right\}
$$

Model checking CTL

$s \in \operatorname{Sat}\left(\exists\left(f_{1} \cup f_{2}\right)\right)$
iff $s \models \exists\left(f_{1} \cup f_{2}\right)$
iff $s \models f_{2} \vee\left(s \models f_{1} \wedge \exists s \rightarrow t: t \models \exists\left(f_{1} \cup f_{2}\right)\right)$
iff $s \in \operatorname{Sat}\left(f_{2}\right) \vee\left(s \in \operatorname{Sat}\left(f_{1}\right) \wedge \exists t \in \operatorname{Post}(s): t \in \operatorname{Sat}\left(\exists\left(f_{1} \cup f_{2}\right)\right)\right.$
iff $s \in \operatorname{Sat}\left(f_{2}\right) \cup\left\{s \in \operatorname{Sat}\left(f_{1}\right) \mid \operatorname{Post}(s) \cap \operatorname{Sat}\left(\exists\left(f_{1} \cup f_{2}\right)\right) \neq \emptyset\right\}$

Proposition

$\operatorname{Sat}\left(\exists\left(f_{1} \cup f_{2}\right)\right)$ is the smallest subset T of S such that

$$
T=\operatorname{Sat}\left(f_{2}\right) \cup\left\{s \in \operatorname{Sat}\left(f_{1}\right) \mid \operatorname{Post}(s) \cap T \neq \emptyset\right\} .
$$

Question

Does such a smallest subset exist?

Smallest Subset

Definition

The function $F: 2^{S} \rightarrow 2^{S}$ is defined by

$$
F(T)=\operatorname{Sat}\left(f_{2}\right) \cup\left\{s \in \operatorname{Sat}\left(f_{1}\right) \mid \operatorname{Post}(s) \cap T \neq \emptyset\right\}
$$

Definition

A function $G: 2^{S} \rightarrow 2^{S}$ is monotone if for all $T, U \in 2^{S}$, if $T \subseteq U$ then $G(T) \subseteq G(U)$.

Smallest Subset

Proposition

F is monotone.

Proof

Let $T, U \in 2^{S}$. Assume that $T \subseteq U$. Let $s \in F(T)$. It remains to prove that $s \in F(U)$. Then $s \in \operatorname{Sat}\left(f_{2}\right)$ or $s \in \operatorname{Sat}\left(f_{1}\right)$ and $\operatorname{Post}(s) \cap T \neq \emptyset$. We distinguish two cases.

- If $s \in \operatorname{Sat}\left(f_{2}\right)$ then $s \in F(U)$.
- If $s \in \operatorname{Sat}\left(f_{1}\right)$ and $\operatorname{Post}(s) \cap T \neq \emptyset$ then $\operatorname{Post}(s) \cap U \neq \emptyset$ since $T \subseteq U$. Hence, $s \in F(U)$.

Smallest Subset

Definition

For each $n \in \mathbb{N}$, the set F_{n} is defined by

$$
F_{n}= \begin{cases}\emptyset & \text { if } n=0 \\ F\left(F_{n-1}\right) & \text { otherwise }\end{cases}
$$

Smallest Subset

Proposition

For all $n \in \mathbb{N}, F_{n} \subseteq F_{n+1}$.

Proof

We prove this by induction on n. In the base case, $n=0$, we have that

$$
F_{0}=\emptyset \subseteq F_{1} .
$$

In the inductive case, we have $n>1$. By induction, $F_{n-1} \subseteq F_{n}$. Since F is monotone, we have that

$$
F_{n}=F\left(F_{n-1}\right) \subseteq F\left(F_{n}\right)=F_{n+1} .
$$

Smallest Subset

Proposition

If S is a finite set. then $F_{n}=F_{n+1}$ for some $n \in \mathbb{N}$.

Proof

Suppose that S contains m elements. Towards a contradiction, assume that $F_{n} \neq F_{n+1}$ for all $n \in \mathbb{N}$. Then $F_{n} \subset F_{n+1}$ for all $n \in \mathbb{N}$. Hence, F_{n} contains at least n elements. Therefore, F_{m+1} contains more elements than S. This contradicts that $F_{m+1} \subseteq S$.

We denote the F_{n} with $F_{n}=F_{n+1}$ by $f i x(F)$.

Smallest Subset

Proposition

For all $T \subseteq S$, if $F(T)=T$ then $f i x(F) \subseteq T$.

Proof

First, we prove that for all $n \in \mathbb{N}, F_{n} \subseteq T$ by induction on n. In the base case, $n=0$, we have that

$$
F_{0}=\emptyset \subseteq T .
$$

In the inductive case, we have $n>1$. By induction, $F_{n-1} \subseteq T$. By induction

$$
F_{n}=F\left(F_{n-1}\right) \subseteq F(T)=T .
$$

Since $\operatorname{fix}(F)=F_{n}$ for some $n \in \mathbb{N}$, we can conclude that $f i x(F) \subseteq T$.

Smallest Subset

Corollary
fix (F) is the smallest T of S such that $F(T)=T$.

Model Checking CTL

Sat (f) :
switch (f):

$$
\begin{array}{rll}
a & \text { return }\{s \in S \mid a \in \ell(s)\} \\
f_{1} \wedge f_{2} & : & \text { return } \operatorname{Sat}\left(f_{1}\right) \cap \operatorname{Sat}\left(f_{2}\right) \\
\neg f & : & \text { return } S \backslash \operatorname{Sat}(f) \\
\exists \bigcirc f & : & \text { return }\{s \in S \mid \operatorname{Post}(s) \cap \operatorname{Sat}(f) \neq \emptyset\} \\
\exists\left(f_{1} \cup f_{2}\right) & : & T:=\emptyset \\
& \text { while } T \neq F(T) \\
& T:=F(T) \\
& \text { return } T
\end{array}
$$

where $F(T)=\operatorname{Sat}\left(f_{2}\right) \cup\left\{s \in \operatorname{Sat}\left(f_{1}\right) \mid \operatorname{Post}(s) \cap T \neq \emptyset\right\}$.

Model Checking CTL

Sat (f) : switch (f):

$$
\begin{array}{ll}
\exists\left(f_{1} \cup f_{2}\right) \quad: \quad & E:=\operatorname{Sat}\left(f_{2}\right) \\
& T:=E \\
& \text { while } E \neq \emptyset \\
& \text { let } t \in E \\
& E:=E \backslash\{t\} \\
& \text { for all } s \in \operatorname{Pre}(t) \\
& \text { if } s \in \operatorname{Sat}(f) \backslash T \\
& E:=E \cup\{s\} \\
& T:=T \cup\{s\}
\end{array}
$$

return T
where $\operatorname{Pre}(t)=\{s \in S \mid s \rightarrow t\}$.

Model checking CTL

Definition

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \exists(f \cup f)|\forall \bigcirc f| \forall(f \cup f)
$$

Question
What is $\operatorname{Sat}(\forall \bigcirc f)$?

Model checking CTL

Definition

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \exists(f \cup f)|\forall \bigcirc f| \forall(f \cup f)
$$

Question
What is $\operatorname{Sat}(\forall \bigcirc f)$?

Answer
$\operatorname{Sat}(\forall \bigcirc f)=\{s \in S \mid \operatorname{Post}(s) \subseteq \operatorname{Sat}(f)\}$.

Model checking CTL

Definition

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \exists(f \cup f)|\forall \bigcirc f| \forall(f \cup f)
$$

Question
What is $\operatorname{Sat}\left(\forall\left(f_{1} \cup f_{2}\right)\right)$?

Model checking CTL

$$
\begin{aligned}
& s \in \operatorname{Sat}\left(\forall\left(f_{1} \cup f_{2}\right)\right) \\
& \text { iff } \quad s \models \forall\left(f_{1} \cup f_{2}\right) \\
& \text { iff } \quad s \models f_{2} \vee\left(s \models f_{1} \wedge \forall s \rightarrow t: t \models \forall\left(f_{1} \cup f_{2}\right)\right) \\
& \text { iff } \quad s \in \operatorname{Sat}\left(f_{2}\right) \vee\left(s \in \operatorname{Sat}\left(f_{1}\right) \wedge \forall t \in \operatorname{Post}(s): t \in \operatorname{Sat}\left(\forall\left(f_{1} \cup f_{2}\right)\right)\right. \\
& \text { iff } \quad s \in \operatorname{Sat}\left(f_{2}\right) \cup\left\{s \in \operatorname{Sat}\left(f_{1}\right) \mid \operatorname{Post}(s) \subseteq \operatorname{Sat}\left(\forall\left(f_{1} \cup f_{2}\right)\right)\right\}
\end{aligned}
$$

Model checking CTL

$$
\begin{aligned}
& s \in \operatorname{Sat}\left(\forall\left(f_{1} \cup f_{2}\right)\right) \\
& \text { iff } s \vDash \forall\left(f_{1} \cup f_{2}\right) \\
& \text { iff } \quad s \models f_{2} \vee\left(s \models f_{1} \wedge \forall s \rightarrow t: t \models \forall\left(f_{1} \cup f_{2}\right)\right) \\
& \text { iff } \quad s \in \operatorname{Sat}\left(f_{2}\right) \vee\left(s \in \operatorname{Sat}\left(f_{1}\right) \wedge \forall t \in \operatorname{Post}(s): t \in \operatorname{Sat}\left(\forall\left(f_{1} \cup f_{2}\right)\right)\right. \\
& \text { iff } \quad s \in \operatorname{Sat}\left(f_{2}\right) \cup\left\{s \in \operatorname{Sat}\left(f_{1}\right) \mid \operatorname{Post}(s) \subseteq \operatorname{Sat}\left(\forall\left(f_{1} \cup f_{2}\right)\right)\right\}
\end{aligned}
$$

Proposition

$\operatorname{Sat}\left(\forall\left(f_{1} \cup f_{2}\right)\right)$ is the smallest subset T of S such that

$$
T=\operatorname{Sat}\left(f_{2}\right) \cup\left\{s \in \operatorname{Sat}\left(f_{1}\right) \mid \operatorname{Post}(s) \subseteq T\right\} .
$$

Model checking CTL

$$
\begin{aligned}
& s \in \operatorname{Sat}\left(\forall\left(f_{1} \cup f_{2}\right)\right) \\
& \text { iff } \quad s \models \forall\left(f_{1} \cup f_{2}\right) \\
& \text { iff } \quad s \models f_{2} \vee\left(s \models f_{1} \wedge \forall s \rightarrow t: t \models \forall\left(f_{1} \cup f_{2}\right)\right) \\
& \text { iff } \quad s \in \operatorname{Sat}\left(f_{2}\right) \vee\left(s \in \operatorname{Sat}\left(f_{1}\right) \wedge \forall t \in \operatorname{Post}(s): t \in \operatorname{Sat}\left(\forall\left(f_{1} \cup f_{2}\right)\right)\right. \\
& \text { iff } \quad s \in \operatorname{Sat}\left(f_{2}\right) \cup\left\{s \in \operatorname{Sat}\left(f_{1}\right) \mid \operatorname{Post}(s) \subseteq \operatorname{Sat}\left(\forall\left(f_{1} \cup f_{2}\right)\right)\right\}
\end{aligned}
$$

Proposition

$\operatorname{Sat}\left(\forall\left(f_{1} \cup f_{2}\right)\right)$ is the smallest subset T of S such that

$$
T=\operatorname{Sat}\left(f_{2}\right) \cup\left\{s \in \operatorname{Sat}\left(f_{1}\right) \mid \operatorname{Post}(s) \subseteq T\right\}
$$

Question

Does such a smallest subset exist?

Size of a CTL formula

$$
\begin{aligned}
|a| & =1 \\
\left|f_{1} \wedge f_{2}\right| & =1+\left|f_{1}\right|+\left|f_{2}\right| \\
|\neg f| & =1+|f| \\
|\exists \bigcirc f| & =1+|f| \\
|\forall \bigcirc f| & =1+|f| \\
\left|\exists \bigcirc\left(f_{1} \cup f_{2}\right)\right| & =1+\left|f_{1}\right|+\left|f_{2}\right| \\
\left|\forall \bigcirc\left(f_{1} \cup f_{2}\right)\right| & =1+\left|f_{1}\right|+\left|f_{2}\right|
\end{aligned}
$$

Time Complexity of CTL Model Checking

By improving the model checking algorithm (see, for example the textbook of Baier and Katoen for details), we obtain

Theorem

For a transition system $T S$, with N states and K transitions, and a CTL formula f, the model checking problem $T S \models f$ can be decided in time $\mathcal{O}((N+K) \cdot|f|)$.

Time Complexity of CTL Model Checking

By improving the model checking algorithm (see, for example the textbook of Baier and Katoen for details), we obtain

Theorem

For a transition system $T S$, with N states and K transitions, and a CTL formula f, the model checking problem $T S \models f$ can be decided in time $\mathcal{O}((N+K) \cdot|f|)$.

Theorem

For a transition system $T S$, with N states and K transitions, and a LTL formula g, the model checking problem $T S \models g$ can be decided in time $\mathcal{O}\left((N+K) \cdot 2^{|g|}\right)$.

Time Complexity of CTL Model Checking

By improving the model checking algorithm (see, for example the textbook of Baier and Katoen for details), we obtain

Theorem

For a transition system $T S$, with N states and K transitions, and a CTL formula f, the model checking problem $T S \models f$ can be decided in time $\mathcal{O}((N+K) \cdot|f|)$.

Theorem

For a transition system $T S$, with N states and K transitions, and a LTL formula g, the model checking problem $T S \models g$ can be decided in time $\mathcal{O}\left((N+K) \cdot 2^{|g|}\right)$.

Theorem

If $\mathrm{P} \neq \mathrm{NP}$ then there exist LTL formulas g_{n} whose size is a polynomial in n, for which equivalent CTL formulas exist, but not of size polynomial in n.

