
Concurrency
EECS 4315

www.eecs.yorku.ca/course/4315/

1/32

www.eecs.yorku.ca/course/4315/

Course evaluation

The course evaluation can be completed here.

2/32

http://courseevaluations.yorku.ca/

Readers-writers problem

public void read() {

this.beginRead();

// read

assert !this.writing;

this.endRead();

}

private synchronized void beginRead() {

while (this.writing) {

try {

this.wait();

} catch (InterruptedException e) {

e.printStackTrace();

}

}

this.readers++;

}
3/32

Synchronized blocks

synchronized(o) {

...

}

Before executing the block of code, the lock of the object o needs
to be acquired.

4/32

Readers-writers problem

Question

Implement the read method using synchronized blocks.

5/32

Readers-writers problem

public void read() {

synchronized(this) {

while (this.writing) {

try {

this.wait();

} catch (InterruptedException e) {

e.printStackTrace();

}

}

this.readers++;

}

...

}

6/32

Starting all threads “at the same time”

The class CyclicBarrier, which is part of the package
java.util.concurrent, contains the method await that allows
a set of threads to all wait for each other.

CyclicBarrier(int parties)

Initializes this CyclicBarrier that will trip when the given
number of parties (threads) are waiting upon it.

public int await()

Waits until all parties have invoked await on this barrier. Returns
the arrival index of the current thread (the last thread to arrive has
index zero).

7/32

Starting all threads “at the same time”

Question

Modify the readers-writers solution so that all readers and writers
start at the same time.

8/32

Starting all threads “at the same time”

public class ReadersAndWriters {

public static void main(String[] args) {

final int READERS = 2;

final int WRITERS = 2;

Database database = new Database();

CyclicBarrier barrier = new CyclicBarrier(READERS + WRITERS);

Reader[] reader = new Reader[READERS];

for (int i = 0; i < READERS; i++) {

reader[i] = new Reader(database, barrier);

}

Writer[] writer = new Writer[WRITERS];

for (int i = 0; i < WRITERS; i++) {

writer[i] = new Writer(database, barrier);

}

...

}

}

9/32

Starting all threads “at the same time”

public class Reader extends Thread {

private Database database;

private CyclicBarrier barrier;

public Reader(Database database, CyclicBarrier barrier) {

super();

this.database = database;

this.barrier = barrier;

}

public void run() {

this.barrier.await();

this.database.read();

}

}

10/32

Race condition and data race

A race condition is a flaw that occurs when the timing or ordering
of events affects a program’s correctness. Generally speaking, some
kind of external timing or ordering non-determinism is needed to
produce a race condition.

A data race happens when there are two memory accesses in a
program where both

target the same location,

are performed concurrently by two threads,

are not reads (at least is a write),

are not synchronization operations.

11/32

Race condition and data race

Many race conditions are due to data races, and many data races
lead to race conditions. However, we can have race conditions
without data races and data races without race conditions.

Question

Give an example that has both a data race and a race condition.

Hint

We have already seen such an example earlier in the course.

12/32

Race condition and data race

Many race conditions are due to data races, and many data races
lead to race conditions. However, we can have race conditions
without data races and data races without race conditions.

Question

Give an example that has both a data race and a race condition.

Hint

We have already seen such an example earlier in the course.

12/32

Race condition and data race

/**

* Two threads that share an account and both do

* a deposit concurrently cause a data race and

* a race condition.

*/

public class Account {

private double balance;

public void deposit(double amount) {

this.balance += amount;

}

}

13/32

Race condition and data race

Many race conditions are due to data races, and many data races
lead to race conditions. However, we can have race conditions
without data races and data races without race conditions.

Question

Give an example that has a race condition but does not have a
data race.

Hint

Modify the previous example.

14/32

Race condition and data race

/**

* Two threads that share an account and both do

* a deposit concurrently cause a race condition

* but no data race.

*/

public class Account {

private double balance;

public void deposit(double amount) {

double temp;

synchronized (this) {

temp = this.balance;

}

temp += amount;

synchronized (this) {

this.balance = temp;

}

}

}

15/32

Race condition and data race

Many race conditions are due to data races, and many data races
lead to race conditions. However, we can have race conditions
without data races and data races without race conditions.

Question

Give an example that has a data race but does not have a race
condition.

16/32

Race condition and data race

/**

* Multiple threads searching for an element in an

* array may cause a data race but not a race condition.

*/

public class Search {

private int[] collection;

private boolean found;

public Search(int[] collection) {

super();

this.collection = collection;

this.found = false;

}

public void find(int from, int to, int element) {

for (int i = from; i < to && !this.found; i++) {

if (this.collection[i] == element) {

this.found = true;

}

}

}
17/32

Detecting data races with JPF

target=<name of the class>

classpath=<path to the folder that contains the bytecode>

listener=gov.nasa.jpf.listener.PreciseRaceDetector

18/32

Compare-and-swap (CAS)

The operation CAS(variable, expected, new) atomically

loads the value of variable,

compares that value to expected,

assigns new to variable if the comparison succeeds, and

returns the old value of variable.

19/32

java.util.concurrent.atomic

The Java package java.util.concurrent.atomic contains
classes that support lock-free thread-safe programming on single
variables.

20/32

AtomicReference〈V〉

Objects of type AtomicReference<V> contain a value of type V
that may be updated atomically.

The class contains the method

public final boolean compareAndSet(V expect, V update)

It atomically sets the value to update if the current value of the
object == expect. It returns true if the update is successful, and
false otherwise.

21/32

Node〈T〉

public class Node<T> {

private final T data;

private Node<T> next;

public Node(T data, Node<T> next) {

this.data = data;

this.next = next;

}

...

}

22/32

AtomicReference〈V〉

Problem

Implement a Stack by means of AtomicReference<V>.

23/32

Stack

public class Stack<T> {

private final AtomicReference<Node<T>> top;

public Stack() {

super();

this.top = new AtomicReference<Node<T>>();

}

...

}

24/32

Stack

public T pop() throws Exception {

Node<T> node;

do {

node = this.top.get();

if (node == null) {

throw new Exception();

}

}

while (!this.top.compareAndSet(node, node.getNext()));

return node.getData();

}

25/32

Stack

public void push(T data) {

Node<T> node = new Node<T>(data, null);

do {

node.setNext(this.top.get());

}

while (!this.top.compareAndSet(node.getNext(), node));

}

26/32

AtomicReferenceFieldUpdater〈T,V〉

The class contains the method

public static <U,W> AtomicReferenceFieldUpdater<U,W>

newUpdater(Class<U> tclass,

Class<W> vclass,

String fieldName)

It returns an object that can be used to atomically update the field
with the given fieldName.

27/32

AtomicReferenceFieldUpdater〈T,V〉

The class contains the method

public abstract boolean compareAndSet(T object,

V expect, V update)

It atomically sets the field of the given object managed by this
updater to the given update value if the current value ===
expect.

This method is guaranteed to be atomic with respect to other calls
to compareAndSet, but not necessarily with respect to other
changes in the field.

28/32

AtomicReferenceFieldUpdater〈T,V〉

Problem

Implement a Stack by means of
AtomicReferenceFieldUpdater<T,V>.

29/32

Stack

public class Stack<T> {

private Node<T> top;

private static final

AtomicReferenceFieldUpdater<Stack, Node> updater =

AtomicReferenceFieldUpdater.newUpdater(Stack.class,

Node.class, "top");

public Stack() {

this.top = null;

}

...

}

30/32

Stack

public T pop() throws Exception {

Node<T> node;

do {

node = this.top;

if (node == null) {

throw new Exception();

}

}

while (!updater.compareAndSet(this, node,

node.getNext()));

return node.getData();

}

31/32

Stack

public void push(T data) {

Node<T> node = new Node<T>(data, null);

do {

node.setNext(this.top);

}

while (!updater.compareAndSet(this, node.getNext(),

node));

}

32/32

