
Software for Dependable Systems
EECS 4315

www.eecs.yorku.ca/course/4315/

www.eecs.yorku.ca/course/4315/ EECS 4315 1 / 30

www.eecs.yorku.ca/course/4315/
www.eecs.yorku.ca/course/4315/

Software for Dependable Systems

Daniel Jackson, Martyn Thomas, and Lynette I. Millett, editors.
Software for Dependable Systems: Sufficient Evidence? The
National Academies Press. 2007.

www.eecs.yorku.ca/course/4315/ EECS 4315 2 / 30

www.eecs.yorku.ca/course/4315/

Daniel Jackson

Professor at MIT.
MA in Physics from Oxford
University in 1984.
PhD in Computer Science
from MIT in 1992.

Source: people.csail.mit.edu/dnj

www.eecs.yorku.ca/course/4315/ EECS 4315 3 / 30

www.eecs.yorku.ca/course/4315/

Martyn Thomas

British independent
consultant and software
engineer.
Visiting professor at the
Oxford University.
Visiting professor at the
University of Bristol.
Fellow at the Royal Academy
of Engineering. Source: Twitter

www.eecs.yorku.ca/course/4315/ EECS 4315 4 / 30

www.eecs.yorku.ca/course/4315/

Lynette I. Millett

Director of the Forum on
Cyber Resilience at the
National Academies.
MSc in Computer Science
from Cornell University.

Source: LinkedIn

www.eecs.yorku.ca/course/4315/ EECS 4315 5 / 30

www.eecs.yorku.ca/course/4315/

Slides

The remaining slides are based on slides by Daniel Jackson
which can be found at the http://people.csail.mit.
edu/dnj/talks/depcert07/depcert07.pdf.

www.eecs.yorku.ca/course/4315/ EECS 4315 6 / 30

http://people.csail.mit.edu/dnj/talks/depcert07/depcert07.pdf
http://people.csail.mit.edu/dnj/talks/depcert07/depcert07.pdf
www.eecs.yorku.ca/course/4315/

Concerns

Growing role of mission-critical software,
risks of undependable software,
high cost of development, and
uncertainty about value of certification.

www.eecs.yorku.ca/course/4315/ EECS 4315 7 / 30

www.eecs.yorku.ca/course/4315/

Broad Perspective

A big question

How can software be made dependable in a cost-effective
manner?

www.eecs.yorku.ca/course/4315/ EECS 4315 8 / 30

www.eecs.yorku.ca/course/4315/

What We Know

Extent of failures to date:
software has already resulted in critical system failures,
leading to death, injury and major economic loss.

www.eecs.yorku.ca/course/4315/ EECS 4315 9 / 30

www.eecs.yorku.ca/course/4315/

What We Know

Roots of failure:
bugs in code account only for 3% of failures blamed on
software,
most failures blamed on interactions with operators and
environment, and
often poor understanding of requirements.

www.eecs.yorku.ca/course/4315/ EECS 4315 10 / 30

www.eecs.yorku.ca/course/4315/

What We Know

Development strategies:
building dependable software is difficult and costly,
quality is highly variable,
certification regimes and standards have mixed record, and
organizational culture has dramatic effect.

www.eecs.yorku.ca/course/4315/ EECS 4315 11 / 30

www.eecs.yorku.ca/course/4315/

What We Don’t Know

Incomplete and unreliable data about:
extent and frequency of software failures,
efficacy of development approaches, and
benefits of certification schemes.

www.eecs.yorku.ca/course/4315/ EECS 4315 12 / 30

www.eecs.yorku.ca/course/4315/

What We Don’t Know

Consequences:
mandating particular process does not guarantee
dependability,
avoid being too prescriptive about particular tools or
techniques,
put in place mechanisms for collecting industry-wide
evidence, and
make evidence focus of dependable system development.

www.eecs.yorku.ca/course/4315/ EECS 4315 13 / 30

www.eecs.yorku.ca/course/4315/

Notable Accidents

Injury and loss of life:
Korean Air 747 in Guam, 200 deaths (1997),
30,000 deaths and 600,000 injuries from medical devices
(1985-2005)
perhaps 8% due to software?

Major economic loss:
Code Red worm, $2.75 billion in damage.

www.eecs.yorku.ca/course/4315/ EECS 4315 14 / 30

www.eecs.yorku.ca/course/4315/

Near Misses

Critical application domains:
Palmdale air-traffic control outage, 800 flights disrupted
(2004), and
blackout in Northeast (2003).

Widespread use of invasive devices:
200,000 pacemaker recalls due to software (1990-2000),
and
23,900 Prius cars affected by software recall (2005).

Centralization leads to single point of failure:
pharmacy database failure (Cook & O’Connor, 2005).

www.eecs.yorku.ca/course/4315/ EECS 4315 15 / 30

www.eecs.yorku.ca/course/4315/

Certification Problems

In general:
expensive and burdensome,
certification 6= fewer vulnerabilities, and
limited focus on security components.

In avionics:
study of code at levels A and B finds no difference, and
modified condition/decision coverage testing rarely
exposes errors.

In medicine:
heavy reliance on testing and process,
hasn’t prevented accidents due to bad practice, and
17 deaths in Panama (2001), similar incident to Therac-25
(1985).

www.eecs.yorku.ca/course/4315/ EECS 4315 16 / 30

www.eecs.yorku.ca/course/4315/

Why Certification Helps

Promotes safety culture:
seriousness, attention to detail, and
rigorous process.

Helps justify safety investment:
balances hurry to get product to market.

www.eecs.yorku.ca/course/4315/ EECS 4315 17 / 30

www.eecs.yorku.ca/course/4315/

Software for a Safer World

In medicine:
98,000 patients die annually from preventable errors,
better tools for diagnosis and intervention, and
effect of widespread IT on health would be major.

In avionics:
detecting impending accidents,
“controlled flight into terrain” responsible for most deaths,
collisions during ground operations, and
digital controllers to monitor engine performance.

In other areas:
transportation: preventing car accidents,
energy: monitoring generation and distribution, and
telecommunications: better connectivity during
emergencies.

www.eecs.yorku.ca/course/4315/ EECS 4315 18 / 30

www.eecs.yorku.ca/course/4315/

Towards Dependable Software: the Three Es

Explicit:
properties established,
assumptions about domain and usage, and
level of dependability.

Evidence:
dependability case that properties hold,
scientifically justifiable claims, and
open to audit by a third-party.

Expertise:
approach is technology-independent,
demand for evidence stretches today’s best practices, and
deviate from best practice only with good reason.

www.eecs.yorku.ca/course/4315/ EECS 4315 19 / 30

www.eecs.yorku.ca/course/4315/

Explicitness

Why be explicit?
no system dependable in all respects, and
so must choose, consciously or not.

What to make explicit?
critical properties expected to hold,
assumptions about environment and usage, and
level of dependability claimed.

Radiotherapy example:
property: emergency stop button turns off beam within
10ms,
assumption: mechanical beam stop works, and
level: 1 failure in 100 machines operating for 20 years.

www.eecs.yorku.ca/course/4315/ EECS 4315 20 / 30

www.eecs.yorku.ca/course/4315/

Environmental Assumptions

What happened?
Airbus A320, Warsaw 1993,
aircraft landed on wet runway,
aquaplaned, so brakes didn’t work, and
pilot applied reverse thrust, but disabled.

Why did that happen?
reverse thrust disabled iff landing gears under
compression.

www.eecs.yorku.ca/course/4315/ EECS 4315 21 / 30

www.eecs.yorku.ca/course/4315/

Evidence

Dependability case:
an auditable argument for dependability, and
software ∧ assumptions ⇒ properties.

For each element of argument, use most effective technique,
for example,

type checker – independence of modules,
static analysis – no buffer overflows,
theorem proving – code meets specification,
model checking – protocol doesn’t deadlock and
testing – environmental assumptions hold.

Process:
to preserve chain of evidence, and
deployed code = analyzed code.

www.eecs.yorku.ca/course/4315/ EECS 4315 22 / 30

www.eecs.yorku.ca/course/4315/

Testing and Analysis

Testing:
tiny proportion of scenarios, so rarely justifies high
confidence,
sometimes exhaustive testing is possible, and
automatic regression testing is an essential process
practice.

Analysis:
for local reasoning,
formal and informal, but best if mechanized, and
static analysis, model checking and theorem proving.

Justified claims:
must state what inferences are drawn from analysis and
testing, and
bug finders are useful, but might not contribute much.

www.eecs.yorku.ca/course/4315/ EECS 4315 23 / 30

www.eecs.yorku.ca/course/4315/

Role of Process

When to construct the case?
too expensive to delay until system is complete, and
construct hand-in-hand with system.

Chain of evidence:
produced during development,
preserved by careful checks and procedures, and
leaves auditable records.

www.eecs.yorku.ca/course/4315/ EECS 4315 24 / 30

www.eecs.yorku.ca/course/4315/

Expertise

Approach is technology-independent:
doesn’t rely on particular tools, languages, methods,
just following best practices is not good enough,
but new approach demands expertise.

Examples of expertise required:
prioritization and formalization of requirements,
design of true data abstractions, not just lip service to OOP,
substantive code standards: avoiding unsafe language
features, and
reflective bug tracking: back to origin.

www.eecs.yorku.ca/course/4315/ EECS 4315 25 / 30

www.eecs.yorku.ca/course/4315/

Simplicity

No alternative:
high confidence will require verification,
cost of verifying entire code base too high, and
therefore must design system with properties in mind.

Separation of concerns is key:
establish critical properties in a few small modules,
need independence arguments, and
support with safe languages, virtual machines, etc.

www.eecs.yorku.ca/course/4315/ EECS 4315 26 / 30

www.eecs.yorku.ca/course/4315/

Certification Regimes

Current regimes:
few encompass the combination the book by Jackson et al.
recommends.

In the future:
certification = inspection and analysis of dependability
case,
by development organization, customer, or third-party, and
no single regime for all circumstances.

Accountability:
no fixed prescription,
but must be clear at outset who’s responsible for failure.

www.eecs.yorku.ca/course/4315/ EECS 4315 27 / 30

www.eecs.yorku.ca/course/4315/

Culture Change Needed

Transparency:
customers want to make informed judgments,
criteria and evidence for claims must be transparent,
publishing defect data boosts supplier’s credibility, and
certification process should be transparent (cf. e-voting).

Accountability:
who is responsible if it fails?
no fixed assignment, but must be clear.

Evidence and openness:
dearth of evidence hampers technology and policy
advances, and
encourage collection, publication and analysis of failure
data.

www.eecs.yorku.ca/course/4315/ EECS 4315 28 / 30

www.eecs.yorku.ca/course/4315/

Education and Research

Education:
demand for dependable software requires workforce,
emphasis on software construction as systems building,
high school: less on mechanism, more on problem solving,
and
university: more on security, usability, specification,
argument.

Research:
tools and techniques for constructing dependability cases,
components and compositional dependability cases,
how to bolster role of testing as evidence, and
reasoning about fail-stop systems.

www.eecs.yorku.ca/course/4315/ EECS 4315 29 / 30

www.eecs.yorku.ca/course/4315/

Now versus Future

current future?
requirements massive informal list a few critical properties
design highly coupled small trusted base
testing expensive and unfocused environmental assumptions
analysis in reviews, unrecorded proof of no deadlock
best practices specify commenting style guarantee no buffer overflow
quality plan long, unread, unchanging succinct, known, responsive
certification testing and process checklist audit of dependability case

www.eecs.yorku.ca/course/4315/ EECS 4315 30 / 30

www.eecs.yorku.ca/course/4315/

