
https://wiki.eecs.yorku.ca/course_archive/2016-17/W/4315/

The State Space in XML Format
EECS 4315

Today’s Plan
� XML
� JPF Report System
� Implementing a PublisherExtension

� Parameterizing a Listener
� Model Classes

Today’s Plan
� XML
� JPF Report System
� Implementing a PublisherExtension

� Parameterizing a Listener
� Model Classes

XML
� XML stands for eXtensible Markup Language
� XML was designed to store and transport data
� XML was designed to be both human- and

machine-readable

XML vs HTML
XML and HTML were designed with different goals:

� XML tags are not predefined like HTML tags are

XML HTML

Goal Carry data Display data

Focus what data How data looks

Our XML report file
<state_space>

<state id = 1>
<transition target = 2> </transition>
<transition target = 3> </transition>

</state>
<state id = 2 >

<transition target = 3> </transition>
</state>

</state_space >

Today’s Plan
� XML
� JPF Report System
� Implementing a PublisherExtension

� Parameterizing a Listener
� Model Classes

JPF Report System
Three major components:
� the Reporter
� any number of format specific Publisher objects
� any number of tool-, property- and Publisher-

specific PublisherExtension objects

JPF Report System
jpf

reporter

JPF()
addPublisherExtension()
setPublisherTopics()

Reporter

publishers
searchStarted()
propertyViolated()
searchFinished()

extensions
topics
out

Publisher

publishStart()
getOut()
publishTopicStart()
publishTopicEnd()

PublisherExtension

publishStart()
publishFinished()
publishTransition()

Return the
PrintWriter object
which is used by JPF to
print data.

Its default value is
console. How to set it to
xml?

Configure the Properties

� Set the publisher to be console or xml where console is the
default value

report.publisher = xml

� Set the output file name
report.xml.file = HelloWorld

Today’s Plan
� XML
� JPF Report System
� Implementing a PublisherExtension

� Parameterizing a Listener
� Model Classes

The PublisherExtension Interface

public interface PublisherExtension {
void publishStart(Publisher publisher);
void publishTransition(Publisher publisher);
void publishPropertyViolation(Publisher publisher);
void publishConstraintHit(Publisher publisher);
void publishFinished(Publisher publisher);
void publishProbe(Publisher publisher);

}

Question:	
How the Publisher object is used?

Answer:
PrintWriter out = publisher.getOut();
or
publisher.publishTopicStart(“…”);
publisher.publishTopicEnd(“…”);

Question:	
How to print the first tag? Which method should we implement?
Answer:	 publishStart(Publisher){ }

Question:	
How to print the last tag? Which method should we implement?
Answer:	 publishFinished(Publisher){ }

Question:	
How to print the transitios? Which method should we implement?
Answer:	 publishTransition(Publisher){ }

<state_space>
<state id = 1>

<transition target = 2> </transition>
<transition target = 3> </transition>

</state>
</state_space >

StateSpaceXML
public class StateSpaceXML extends ListenerAdapter implements SearchListener, PublisherExtension{

private int source;
private int target;

public StateSpaceXML(Config config, JPF jpf) {
source = -1;
target = -1;
jpf.addPublisherExtension(Publisher.class, this);

}

@Override
public void publishTransition(Publisher publisher) {

PrintWriter out = publisher.getOut();
if (source != -1) {

out.println(”<state id = ” + this.source +”>”);
//publisher. publishTopicStart(“state id =” + this.source);

}
}

}
// The StateSpaceXML is improved to print the exact XML format in this lecture

//Notice that the application only works with BFS search strategy

Today’s Plan
� XML
� JPF Report System
� Implementing a PublisherExtension

� Parameterizing a Listener
� Model Classes

Parameterizing a Listener
private String separator;

public StateSpacePrinter(Config config) {

source = -1;

target = -1;

separator = config.getString("stateSpacePrinter.separator", "->");

}

We can set the separator in the application properties file:

stateSpacePrinter.separator = -->

The default value is given in the constructor.

Today’s Plan
� XML
� JPF Report System
� Implementing a PublisherExtension

� Parameterizing a Listener
� Model Classes

public	class	Sine	{
public	static	void	main(String[]	args)	{	

System.out.println(StrictMath.sin(0.3));	
}	

}

Question:	
error #1: gov.nasa.jpf.vm.NoUncaughtExceptionsProperty
"java.lang.UnsatisfiedLinkError: cannot find native..."

Answer:
Because the sin method is native.
public static native double sin(double a);

Question:	
What is native method?

Answer:
A method that is implemented in a language other than Java but
that is invoked from a Java app.

� Allows programmers to use code that has been already
implemented in other languages.

� May increase the performance.
� May support certain platform-dependent features.

Java Native Interface (JNI)

JNI provides the infrastructure for Java code to use
libraries written in other languages such as C, C++
and assembly.

How JPF handle native methods?

�Using model classes.
�Using native peers.
�Using a combination of model classes and native

peers.
�Using the extension jpf-nhandler.

Model Class
A model class captures the behaviour of a native method in
pure Java.

Question:	
How can we capture the behaviour of the sin method?

Answer:
For example, we approximate the sine function with the
Bhaskara I’s sine approximation formula:

sin 𝑎 = 	 '()(+,))
.+/,0)(+,))

package java.lang;

public class StrictMath {
public static double sin(double a) {

return 16 * a * (Math.PI - a) / (5 *
Math.PI * Math.PI - 4 * a * (Math.PI - a));

//this also works
//return Math.sin(a);

}
}

Model Class

� The model class StrictMath is part of the package
java.lang.

� The model class only contains one method, whereas the
original StrictMath class contains many more.

� Add the path of StrictMath.class to native_classpath

Thank you!

