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Computation Tree Logic

The state formulas are defined by

f ::= a | f ∧ f | ¬f | ∃g | ∀g

The path formulas are defined by

g ::=©f | f U f
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Syntactic sugar

∃♦f = ∃(true U f )
∀♦f = ∀(true U f )
∃�f = ¬∀(true U ¬f )
∀�f = ¬∃(true U ¬f )
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Example

Question
How to express “Each red light is preceded by a green light” in
CTL?

Answer
¬red ∧ ∀�(green ∨ ∀©¬red)
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Example

Question
How to express “The light is infinitely often green” in CTL?

Answer
∀�∀♦green
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Semantics of CTL

s |= a iff a ∈ `(s)
s |= f1 ∧ f2 iff s |= f1 and s |= f2

s |= ¬f iff not(s |= f )
s |= ∃g iff ∃p ∈ Paths(s) : p |= g
s |= ∀g iff ∀p ∈ Paths(s) : p |= g

and

p |=©f iff p[1] |= f
p |= f1 U f2 iff ∃i ≥ 0 : p[i] |= f2 and ∀0 ≤ j < i : p[j] |= f1
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Semantics of CTL

TS |= f iff ∀s ∈ I : s |= f .

The satisfaction set Sat(f ) is defined by

Sat(f ) = { s ∈ S | s |= f }.
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Semantics of CTL

Question
Recall that

∃♦f = ∃(true U f ).

How is
s |= ∃♦f

defined?

Answer

∃p ∈ Paths(s) : ∃i ≥ 0 : p[i] |= f .
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Expressiveness of LTL and CTL

Theorem
The property

∀p ∈ Paths(TS) : ∀m ≥ 0 : ∃p′ ∈ Paths(p[m]) : ∃n ≥ 0 : p′[n] |= a

cannot be captured by LTL, but is captured by the CTL formula
∀�∃♦a.
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Model checking CTL

Basic idea
Compute Sat(f ) by recursion on the structure of f .

TS |= f iff I ⊆ Sat(f ).

Alternative view
Label each state with the subformulas of f that it satisfies.
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Model checking CTL

Definition
The formulas are defined by

f ::= a | f ∧ f | ¬f | ∃©f | ∃(f U f ) | ∀©f | ∀(f U f )

Question
What is Sat(a)?

Answer
Sat(a) = { s ∈ S | a ∈ `(s) }

Alternative view
Label each state s satisfying a ∈ `(s) with a.
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Example

green

1

32

1 7→ ∅
2 7→ {green}
3 7→ {green}
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Model checking CTL

Definition
The formulas are defined by

f ::= a | f ∧ f | ¬f | ∃©f | ∃(f U f ) | ∀©f | ∀(f U f )

Question
What is Sat(f1 ∧ f2)?

Answer
Sat(f1 ∧ f2) = Sat(f1) ∩ Sat(f2)

Alternative view
Label states, that are labelled with both f1 and f2, also with
f1 ∧ f2.
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Example

green ∧ purple

1

32

1 7→ {purple}
2 7→ {green}
3 7→ {green,purple,green ∧ purple}
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The formulas are defined by
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What is Sat(¬f )?

Answer
Sat(¬f ) = S \ Sat(f )

Alternative view
Label each state, that is not labelled with f , with ¬f .
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Example

¬(green ∧ purple)

1

32

1 7→ {purple,¬(green ∧ purple)}
2 7→ {green,¬(green ∧ purple)}
3 7→ {green,purple,green ∧ purple}

www.eecs.yorku.ca/course/4315/ EECS 4315 20 / 31

www.eecs.yorku.ca/course/4315/


Example

¬(green ∧ purple)

1

32

1 7→ {purple,¬(green ∧ purple)}
2 7→ {green,¬(green ∧ purple)}
3 7→ {green,purple,green ∧ purple}

www.eecs.yorku.ca/course/4315/ EECS 4315 20 / 31

www.eecs.yorku.ca/course/4315/


Model checking CTL

Definition
The formulas are defined by

f ::= a | f ∧ f | ¬f | ∃©f | ∃(f U f ) | ∀©f | ∀(f U f )

Question
What is Sat(∃©f )?

Answer
Sat(∃©f ) = { s ∈ S | Post(s) ∩ Sat(f ) 6= ∅ } where
Post(s) = { s′ ∈ S | s → s′ }.

Alternative view
Labels those states, that have a direct successor labelled with
f , also with ∃©f .
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Example

∃©green

1

32

1 7→ {∃©green}
2 7→ {green,∃©green}
3 7→ {green}
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Example

∃©green

1

32

1 7→ {∃©green}
2 7→ {green, ∃©green}
3 7→ {green}
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Model checking CTL

Definition
The formulas are defined by

f ::= a | f ∧ f | ¬f | ∃©f | ∃(f U f ) | ∀©f | ∀(f U f )

Question
What is Sat(∃(f1 U f2))?
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Model checking CTL

s ∈ Sat(∃(f1 U f2))
iff s |= ∃(f1 U f2)
iff s |= f2 ∨ (s |= f1 ∧ ∃s → t : t |= ∃(f1 U f2))
iff s ∈ Sat(f2) ∨ (s ∈ Sat(f1) ∧ ∃t ∈ Post(s) : t ∈ Sat(∃(f1 U f2))
iff s ∈ Sat(f2) ∪ { s ∈ Sat(f1) | Post(s) ∩ Sat(∃(f1 U f2)) 6= ∅}

Proposition

Sat(∃(f1 U f2)) is the smallest subset T of S such that

T = Sat(f2) ∪ { s ∈ Sat(f1) | Post(s) ∩ T 6= ∅}.

Question
Does such a smallest subset exist?
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Smallest Subset

Definition

The function F : 2S → 2S is defined by

F (T ) = Sat(f2) ∪ { s ∈ Sat(f1) | Post(s) ∩ T 6= ∅ }.

Definition

A function G : 2S → 2S is monotone if for all T , U ∈ 2S,
if T ⊆ U then G(T ) ⊆ G(U).
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Smallest Subset

Proposition
F is monotone.

Proof

Let T , U ∈ 2S. Assume that T ⊆ U. Let s ∈ F (T ). It remains to
prove that s ∈ F (U). Then s ∈ Sat(f2) or s ∈ Sat(f1) and
Post(s) ∩ T 6= ∅. We distinguish two cases.

If s ∈ Sat(f2) then s ∈ F (U).
If s ∈ Sat(f1) and Post(s) ∩ T 6= ∅ then Post(s) ∩ U 6= ∅
since T ⊆ U. Hence, s ∈ F (U).
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Smallest Subset

Definition
For each n ∈ N, the set Fn is defined by

Fn =

{
∅ if n = 0
F (Fn−1) otherwise
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Smallest Subset

Proposition
For all n ∈ N, Fn ⊆ Fn+1.

Proof
We prove this by induction on n. In the base case, n = 0, we
have that

F0 = ∅ ⊆ F1.

In the inductive case, we have n > 1. By induction, Fn−1 ⊆ Fn.
Since F is monotone, we have that

Fn = F (Fn−1) ⊆ F (Fn) = Fn+1.
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Smallest Subset

Proposition
If S is a finite set. then Fn = Fn+1 for some n ∈ N.

Proof
Suppose that S contains m elements. Towards a contradiction,
assume that Fn 6= Fn+1 for all n ∈ N. Then Fn ⊂ Fn+1 for all
n ∈ N. Hence, Fn contains at least n elements. Therefore, Fm+1
contains more elements than S. This contradicts that
Fm+1 ⊆ S.

We denote the Fn with Fn = Fn+1 by fix(F ).
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Smallest Subset

Proposition

For all T ⊆ S, if F (T ) = T then fix(F ) ⊆ T .

Proof
First, we prove that for all n ∈ N, Fn ⊆ T by induction on n. In
the base case, n = 0, we have that

F0 = ∅ ⊆ T .

In the inductive case, we have n > 1. By induction, Fn−1 ⊆ T .
By induction

Fn = F (Fn−1) ⊆ F (T ) = T .

Since fix(F ) = Fn for some n ∈ N, we can conclude that
fix(F ) ⊆ T .
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Smallest Subset

Corollary

fix(F ) is the smallest T of S such that F (T ) = T .
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