Assignment (EECS6327 W18)

Due: in class on Feb 15, 2018.

You have to work individually. Hand in a hardcopy of your answers before the deadline. No late submission will be accepted. No handwriting is accepted. Direct your queries to Hui Jiang (hj@cse.yorku.ca).

1. Mutual Information: Assume we have a random vector $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ which follows a bivariate Gaussian distribution: $\mathcal{N}(\mathbf{x}|\mu, \Sigma)$, where $\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$ is the mean vector and $\Sigma = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$ is the covariance matrix. Derive the formula to compute mutual information between x_1 and x_2 , i.e., $I(x_1, x_2)$.

Hints: May need to use the formula: $\Gamma(n+1) = n \cdot \Gamma(n)$.

- 2. KL Divergence: Assume we have two multi-variate Gaussian distributions: $\mathcal{N}(\mathbf{x}|\mu_1, \Sigma_1)$ and $\mathcal{N}(\mathbf{x}|\mu_2, \Sigma_2)$, where μ_1 and μ_2 are their mean vectors, and Σ_1 and Σ_2 are their covariance matrices. Derive the formula to compute the KL divergence between these two Gaussian distributions.
- 3. Classification with rejection: In many pattern classification problems, one has the option either to assign the pattern to one of N classes, or to *reject* it as being unrecognizable. If the cost for rejection is not too high, rejection may be a desirable action. If we observe feature \mathbf{x} of a pattern (assume its true class id is ω_i), let's define the loss function for all actions α_i as:

$$\lambda(\alpha_j|\omega_i) = \begin{cases} 0 & : \quad j = i \text{ (correct classification)} \\ \lambda_s & : \quad j \neq i \text{ and } 1 \leq j \leq N \text{(wrong classification)} \\ \lambda_r & : \quad \text{rejection} \end{cases}$$

where λ_s is the loss incurred for making any a wrong classification decision, and λ_r is the loss incurred for choosing the rejection action. Show the minimum risk is

obtained by the following decision rule: we decide ω_i if $p(\omega_i | \mathbf{x}) \ge p(\omega_j | \mathbf{x})$ for all jand if $p(\omega_i | \mathbf{x}) \ge 1 - \lambda_r / \lambda_s$, and reject otherwise. What happens if $\lambda_r = 0$? What happens if $\lambda_r > \lambda_s$?

4. Linear-Gaussian models: Consider a joint distribution $p(\mathbf{x}, \mathbf{y})$ defined by the marginal and conditional distributions as follows:

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x} \mid \mu, \mathbf{\Delta}^{-1})$$

$$p(\mathbf{y}|\mathbf{x}) = \mathcal{N}(\mathbf{y} \mid \mathbf{A}\mathbf{x} + \mathbf{b}, \mathbf{L}^{-1}),$$

derive and find expressions for the mean and covariance of the marginal distribution $p(\mathbf{y})$ in which the variable \mathbf{x} has been integrated out.

Hints: You may need to use the Woodbury matrix inversion formula:

 $(\mathbf{A} + \mathbf{B}\mathbf{C}\mathbf{D})^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{B}(\mathbf{C}^{-1} + \mathbf{D}\mathbf{A}^{-1}\mathbf{B})^{-1}\mathbf{D}\mathbf{A}^{-1}.$

- 5. Discriminant Analysis: Let $(\mathbf{x}, y) \in \mathcal{R}^d \times \{0, 1\}$ be a random pair such that $\Pr(y = k) = \pi_k > 0$ $(\pi_0 + \pi_1 = 1)$ and the conditional distribution of \mathbf{x} given y is $p(\mathbf{x} \mid y) = \mathcal{N}(\mathbf{x} \mid \mu_y, \Sigma_y)$, where $\mu_0 \neq \mu_1 \in \mathcal{R}^d$ and $\Sigma_0, \Sigma_1 \in \mathcal{R}^{d \times d}$ are mean vectors and covariance matrices respectively.
 - (a) What is the (unconditional) density of \mathbf{x} ?
 - (b) Assume that $\Sigma_0 = \Sigma_1 = \Sigma$ is a positive definite matrix. Compute the Bayes classifier. What is the nature of separation boundary between two classes?
 - (c) Assume that $\Sigma_0 \neq \Sigma_1$ are two positive definite matrices. Compute the Bayes classifier. What is the nature of separation boundary between two classes?