Assignment (EECS6327 W18)

Due: in class on Feb 15, 2018.

You have to work individually. Hand in a hardcopy of your answers before the deadline. No late submission will be accepted. No handwriting is accepted. Direct your queries to Hui Jiang (hj@cse.yorku.ca).

1. Mutual Information: Assume we have a random vector $\mathbf{x}=\binom{x_{1}}{x_{2}}$ which follows a bivariate Gaussian distribution: $\mathcal{N}(\mathbf{x} \mid \mu, \Sigma)$, where $\mu=\binom{\mu_{1}}{\mu_{2}}$ is the mean vector and $\Sigma=\left(\begin{array}{cc}\sigma_{1}^{2} & \rho \sigma_{1} \sigma 2 \\ \rho \sigma_{1} \sigma 2 & \sigma_{2}^{2}\end{array}\right)$ is the covariance matrix. Derive the formula to compute mutual information between x_{1} and x_{2}, i.e., $I\left(x_{1}, x_{2}\right)$.
Hints: May need to use the formula: $\Gamma(n+1)=n \cdot \Gamma(n)$.
2. KL Divergence: Assume we have two multi-variate Gaussian distributions: $\mathcal{N}\left(\mathbf{x} \mid \mu_{\mathbf{1}}, \boldsymbol{\Sigma}_{\mathbf{1}}\right)$ and $\mathcal{N}\left(\mathbf{x} \mid \mu_{\mathbf{2}}, \boldsymbol{\Sigma}_{\mathbf{2}}\right)$, where $\mu_{\mathbf{1}}$ and $\mu_{\mathbf{2}}$ are their mean vectors, and $\boldsymbol{\Sigma}_{\mathbf{1}}$ and $\boldsymbol{\Sigma}_{\boldsymbol{2}}$ are their covariance matrices. Derive the formula to compute the KL divergence between these two Gaussian distributions.
3. Classification with rejection: In many pattern classification problems, one has the option either to assign the pattern to one of N classes, or to reject it as being unrecognizable. If the cost for rejection is not too high, rejection may be a desirable action. If we observe feature \mathbf{x} of a pattern (assume its true class id is ω_{i}), let's define the loss function for all actions α_{j} as:

$$
\lambda\left(\alpha_{j} \mid \omega_{i}\right)=\left\{\begin{aligned}
& 0: \\
& \lambda_{s}: j=i \text { (correct classification) } \\
& \lambda_{r}: \\
& \text { rejection }
\end{aligned}\right.
$$

where λ_{s} is the loss incurred for making any a wrong classification decision, and λ_{r} is the loss incurred for choosing the rejection action. Show the minimum risk is
obtained by the following decision rule: we decide ω_{i} if $p\left(\omega_{i} \mid \mathbf{x}\right) \geq p\left(\omega_{j} \mid \mathbf{x}\right)$ for all j and if $p\left(\omega_{i} \mid \mathbf{x}\right) \geq 1-\lambda_{r} / \lambda_{s}$, and reject otherwise. What happens if $\lambda_{r}=0$? What happens if $\lambda_{r}>\lambda_{s}$?
4. Linear-Gaussian models: Consider a joint distribution $p(\mathbf{x}, \mathbf{y})$ defined by the marginal and conditional distributions as follows:

$$
\begin{gathered}
p(\mathbf{x})=\mathcal{N}\left(\mathbf{x} \mid \mu, \Delta^{-\mathbf{1}}\right) \\
p(\mathbf{y} \mid \mathbf{x})=\mathcal{N}\left(\mathbf{y} \mid \mathbf{A x}+\mathbf{b}, \mathbf{L}^{-\mathbf{1}}\right)
\end{gathered}
$$

derive and find expressions for the mean and covariance of the marginal distribution $p(\mathbf{y})$ in which the variable \mathbf{x} has been integrated out.

Hints: You may need to use the Woodbury matrix inversion formula:
$(\mathbf{A}+\mathbf{B C D})^{-1}=\mathbf{A}^{-1}-\mathbf{A}^{-1} \mathbf{B}\left(\mathbf{C}^{-1}+\mathbf{D A}^{-1} \mathbf{B}\right)^{-1} \mathbf{D A}^{-1}$.
5. Discriminant Analysis: Let $(\mathbf{x}, y) \in \mathcal{R}^{d} \times\{0,1\}$ be a random pair such that $\operatorname{Pr}(y=k)=\pi_{k}>0 \quad\left(\pi_{0}+\pi_{1}=1\right)$ and the conditional distribution of \mathbf{x} given y is $p(\mathbf{x} \mid y)=\mathcal{N}\left(\mathbf{x} \mid \mu_{y}, \Sigma_{y}\right)$, where $\mu_{0} \neq \mu_{1} \in \mathcal{R}^{d}$ and $\Sigma_{0}, \Sigma_{1} \in \mathcal{R}^{d \times d}$ are mean vectors and covariance matrices respectively.
(a) What is the (unconditional) density of \mathbf{x} ?
(b) Assume that $\Sigma_{0}=\Sigma_{1}=\Sigma$ is a positive definite matrix. Compute the Bayes classifier. What is the nature of separation boundary between two classes?
(c) Assume that $\Sigma_{0} \neq \Sigma_{1}$ are two positive definite matrices. Compute the Bayes classifier. What is the nature of separation boundary between two classes?

