Probabistic Models and Machine Learning

No. 1

Introduction

Hui Jiang

Department of Electrical Engineering and Computer Science
Lassonde School of Engineering
York University, Toronto, Canada

Course Info (tentative)

Instructor:

Hui Jiang (hj@cse.yorku.ca)

Course web site:

https://www.eecs.yorku.ca/course/6327/

- Course Format:
 - Lectures (40 hours):
 - Covers basic probabilistic models, pattern classification theory, machine learning algorithms;
 - Self-study on some advanced machine learning topics.
- Evaluation:
 - Class Participation (10%)
 - Two assignments (30%)
 - Two lab projects (40%)
 - In-class presentation (20%)

Course Outline

- Part I: Introduction (6 hours)
 - Machine Learning: basic concepts
 - Math foundation: review
- Part II: Basic theory of pattern classification and machine learning (24 hours)
 - Bayesian decision rule; Model Estimation
 - Generative models: Gaussian, GMM, Markov Chain, HMM, Graphical models
 - Discriminative models: SVM, Neural networks (NN) and beyond
- Part III: Advanced Topics (6 hours)
 - Self-select and self-study
 - Presentation

Reference Materials

- Lecture notes
- Assigned reading materials through the course
- Reference books:
 - [1] Pattern Recognition and Machine Learning by C. M. Bishop. (Springer, ISBN 0-387-31073-8)
 - [2] Pattern Classification (2nd Edition) by R. O. Duda, P. Hart and D. Stork. (John Wiley & Sons, Inc., ISBN 0-471-05669-3)
 - [3] Machine Learning: A Probabilistic Perspectives by K. P. Murphy. (The MIT Press, ISBN 978-0-262-01802-9)
- Prerequisite:
 - □ Probability and statistics
 - ☐ Linear algebra and/or matrix theory
 - □ C/C++/Java; matlab; perl/python/shell (plus)

Relevant Al Research Topics

- Theory
 - ✓ Knowledge Representation and Inference
 - ✓ Machine Learning
 - ✓ Pattern Recognition
 - ✓ Statistical Signal Processing
- Applications
 - ✓ Speech Processing
 - ✓ Natural Language Processing
 - ✓ Computer Vision
 - ✓ Data Mining
 - **√** ...

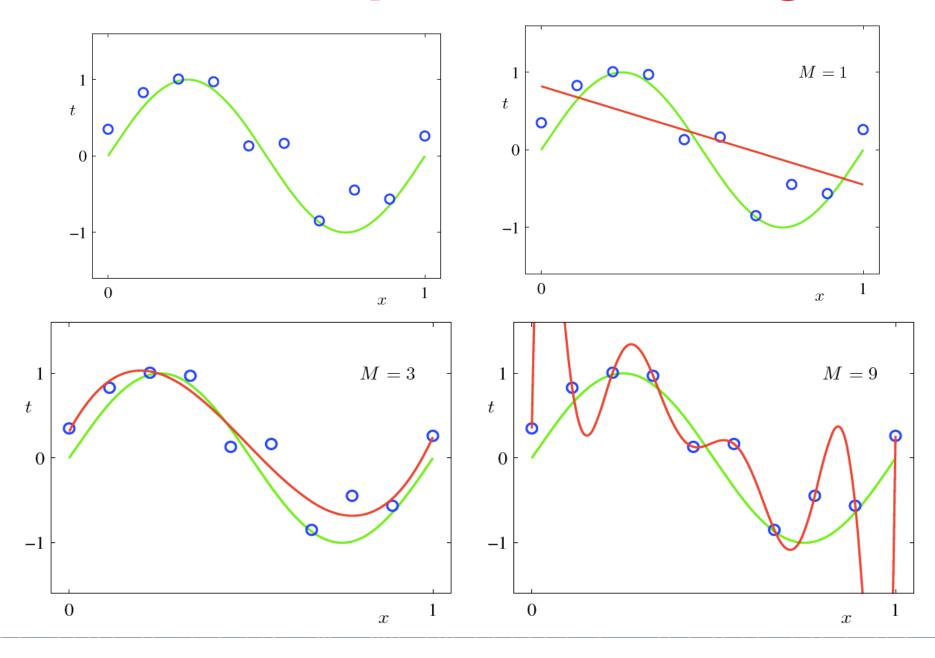
Artificial Intelligence (AI): Paradigm Shift

- Knowledge based → KR
 - Reply on expert(s); Small data samples
 - Simple toy problems
- Data-Driven → ML
 - Large data samples
 - Statistical models; machine learning algorithms
- Big Data Era
 - Massive real-world data samples → powerful models
 - Data intensive computing → computation power
 - Parallel/distributed platform: e.g. GPU, map-reduce

Some Machine Learning Concepts

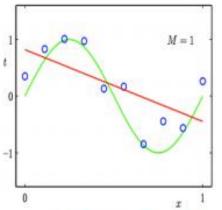
- Classification vs. Regression
- Supervised vs. Unsupervised (Clustering)
- Parametric vs. Non-parametric
- Linear vs. Nonlinear
- Underfitting vs. Overfitting (Regularization)
- Frequentist vs. Bayesian
- Probabilistic models vs. Rule-based (Al vs. ML)

An Example: Curve fitting

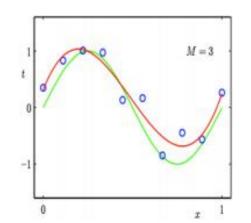


Under-fitting vs. Overfillting (Regularization)

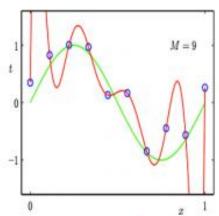
Regression:



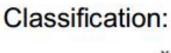
predictor too inflexible:

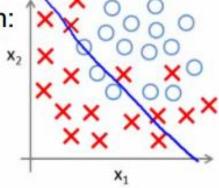


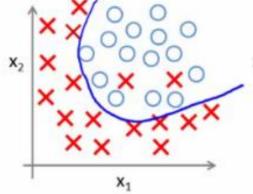
cannot capture pattern

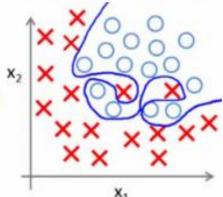


predictor too flexible: fits noise in the data

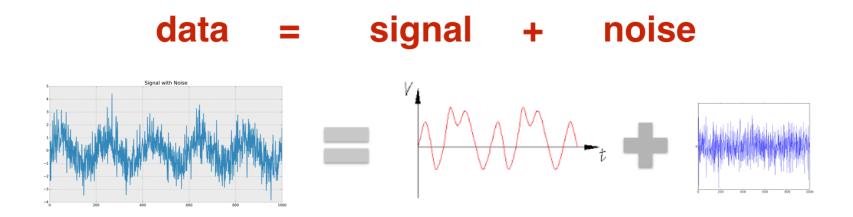








Under-fitting vs. Overfillting (Regularization)



- Too strong models → over-fitting (why?)

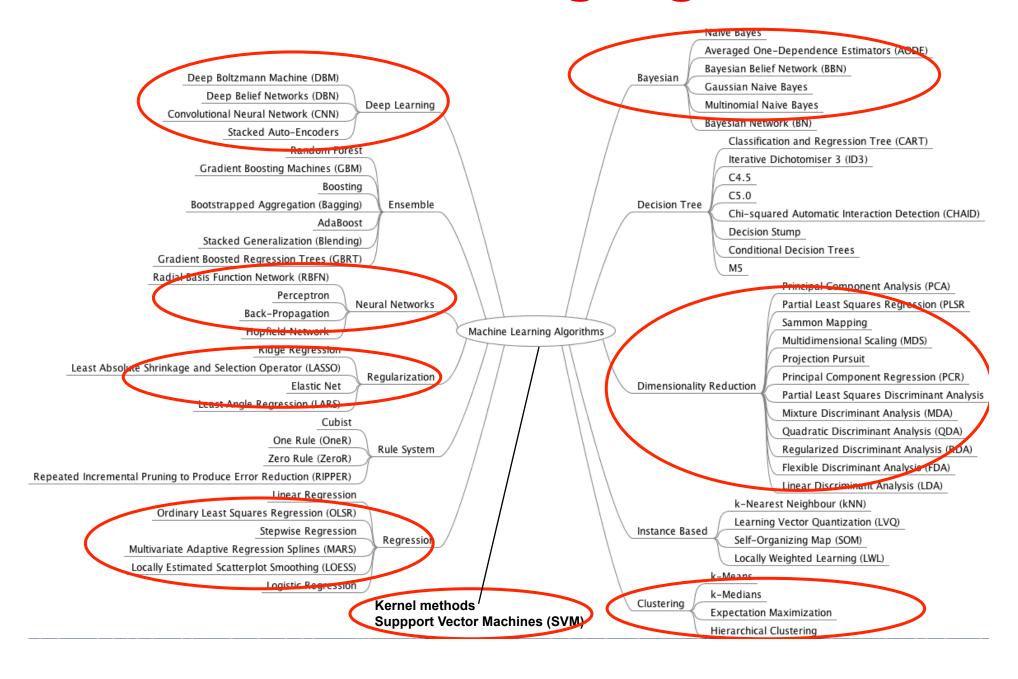
Machine Learning Procedure

- Feature extraction (feature engineering):
 - Need to know objects to extract good features
 - Varies a lot among different applications (speech, audio, text, image, video, gestures, biological sequences, etc)
 - May need reduce dimensionality
- Statistical model training/learning
- Inference, matching, decision

The basic theories common to various applications

Machine Learning Algorithms

Machine Learning Algorithms



Advanced ML Topics

- Learnability
- On-line Learning
- Reinforcement Learning
- Transfer Learning / Adaptation / One-shot Learning
- Active Learning
- Ensemble Learning
- Imitation Learning
- Gaussian Processes
- Causal Learning