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The curse of dimensionality
Feature Extraction
Linear:
- Principal Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)
Nonlinear (manifold learning):
- Multi-Dimensional Scaling (MDS)
- Stochastic Neighbourhood Embedding (SNE)
- Locally Linear Embedding (LLE)
- IsoMap
- Neural Network Bottlenecks

Data Virtualization



The Curse of the Dimensionality

- Feature engineering ==> high-dimension feature vectors
“The curse of the dimensionality”

Highly correlated among dimensions

- Distance In high-dimension space is error-prone

- Intuition fails in high dimensions
- High-D Gaussian distribution: most mass not near mean
- Most mass of a high-D sphere is in the surface

- Most points in high-D cube/sphere is more closer to the
surface than their closest neighbours
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Principal Component Analysis (PCA)

- Two equivalent explanations:
1. Maximum variance formulation

B 2. Minimum-error formulation



Principal Component Analysis (PCA)

- A little math: maximize variance in linear projection

the variance of the projected data i1s given by
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Principal Component Analysis (PCA)

Variance (energy) distribution among principal components

variance (energy) along dimensions after PCA

high-dimension data

MNIST
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Applications of PCA

- Dimensionality reduction

- Reconstruct high-dimension data from the lower-dimension PCA features
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Linear Discriminant Analysis (LDA)

o Fisher's linear discriminant: maximize the class separation

o Supervised dimensionality reduction: needs class labels

3-class feature data
| Good class separation
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Linear Discriminant Analysis (LDA)

- Fisher's linear discriminant. maximize the class separation using within-
class and between-class covariance matrices

© maximizing a ratio defined as:
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Related Work

Probabilistic PCA (PPCA) (Tipping & Bishop, 1999a)
Bayesian PCA, Kernel PCA, Sparse PCA

Mixture of PPCA (Tipping & Bishop, 1999b)

Factor Analysis

Heteroscedastic LDA (HLDA/HDA) (Kumar & Andreous, 1998)

Independent Component Analysis (ICA) (Hyvarinen & Oja,
2000)

Projection Pursuit (Friedman & Tukey, 1974)



Manifold Learning: nonlinear dimensionality reduction

If we measure distances
along the manifold,
d(1,6) >d(1,4)
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Multi-Dimensional Scaling (MDS)

- Preserve between-object distances as much as possible
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Stochastic Neighbourhood Embedding (SNE)

- A probabillistic local mapping method
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Locally Linear Embedding (LLE)

- Maps that preserve local geometry: local configurations
of points in the low-dimensional space resemble the local
configurations in the high-dimensional space.

- Represent a point as a weighted average of nearby points, _|

the weights describe the local configuration:
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- Use the data points Iin hlgh—dlmen8|on to determine the
local weights, then try to re-construct them from its
neighbours in low-dimension.
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IsoMap: Local MDS without local optima

- Connect each datapoint
to its K nearest
neighbours in the high-
dimensional space.

- Put the true Euclidean
distance on each of these
liNnks.

- Then approximate the

manifold distance
petween any pair of
points as the shortest
path in this "neighbour
graph”.




Data Virtualization
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- Project data into 2

- Popular approaches:

- t-SNE:

e

https://lvdmaaten.qgithub.io/tsne/ . s

- Isomap: http://isomap.stanford.edu/
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