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•  Rigde Regression and LASSO 
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Generative vs. discriminative  
models 

•  Posterior probability p(ωi|X)  plays the key role in 
pattern classification, also machine learning. 

–  Generative Models: focus on probability distribution 
of data 

           p(ωi|X) ~  p(ωi) · p(X| ωi) 
                         ≈ p’(ωi) · p’(X| ωi)      (the plug-in MAP rule) 

–  Discriminative Models: directly model discriminant 
function: 

          p(ωi|X) ~  gi(X) 



Pattern classification based on 
Discriminant Functions (I) 

•  Instead of designing a classifier based on probability distribution of 
data, we can build an ad-hoc classifier based on some discriminant 
functions to model class boundary info directly. 

•  Classifier based on discriminant functions: 
–  For N classes, we define a set of discriminant functions hi(X) 

(i=1,2,…,N), one for each class. 
–  For an unknown pattern with feature vector Y, the classifier 

makes the decision as 

–  Each discriminant function hi(X) has a pre-defined function form 
and a set of unknown parameters θi, rewrite it as hi(X ; θi ). 

–  Similarly θi (i=1,2,…,N) need to be estimated from some training 
data. 

ωY = argmax
i

hi (Y )



Statistical Learning Theory  
•  Training samples (xi,yi)    (i=1,2,…,m)  
•  Random sariables X, Y:  joint distribution P(X,Y) 
•  Input space : X  from 
•  Output space : Y  from 

• Machine Learning tries to :  
                y  =   h(X)   +    ε    
 
•  Hypothesis space :      h(.)  from 

•  Loss Function:    L(y, y’)  
  0/1 loss, squared error , …     



Statistical Learning Theory  
•  Empirical Loss (a.k.a. empirical risk, in-sample error): 

 
 
•  Generalization error (a.k.a. generalization risk) 

 

•  Empirical Loss !=  Generalization error  

•  Learnable or not: empirical risk minimization (ERM) ! 
minimizing the generalization error.  



Statistical Learning Theory  

•  Learnibility depends on: 

 
 

•  VC Generalization bounds (Vapnik-Chervonenkis theory): 

  where dvc is called VC-dimension, only depending on . 



Generalization Bounds 
•  The weak law of large numbers: 

•  Concentration inequalities (Heoffding’s inequality) 

 



Generalization Bounds 
•  For a single hypothesis h: 

 
•  Extend for the whole hypothesis space: 

 
•  The first bound: 
 



VC-Dimension 
•  How about infinite number of h in ? 

 Not all h are different … 
 
•  VC-dimension: 
 

o Max # of points the hypothesis space  can shatter 

o Roughly represents model capability 

o VC-dimension of linear classifier:  D+1  

o VC-dimension of Neural network ≤ num of weights 



Examples of generalization bounds 

•  Example I: use m=1000 data samples (feature dimension 
100) to learn a linear classifier (dvc = 101), training error rate 
is 1%, set δ=0.01 (99% chance correct)  

 
•  Example II: same as Example I except m=10000 … 

 
•  Example III: same as Example I except dvc = 1000 

R(h)  0.01 + 1.8065 = 1.8165

R(h)  0.01 + 0.716 = 0.726

R(h)  0.01 + 3.687 = 3.697

R(h)  Remp(h) +
q

8dvc(ln 2m
dvc

+1)+8 ln 4
�

m



Pattern classification based on 
Discriminant Functions (II) 

•  Some common forms for discriminant funtions: 
–  Linear discriminant function: 

–  Quadratic discrimiant function: (2nd order) 
–  Polynomial discriminant function: (N-th order) 
–  Neural network: (arbitrary nonlinear functions) 
–  Optimal discriminant functions: optimal MAP 

classifier is a special case when choosing 
discriminant functions as class posterior 
probabilities. 

h(x) = wt ⋅x + b



Pattern classification based on 
Linear Discriminant Functions 

•  Unknown parameters of discriminant functions are 
estimated to optimize an objective function by some 
gradient descent method : 

–  Perceptron: a simple learning algorithm. 

–  Linear Regression: achieving a good mapping.  

–  Minimum Classification Error (MCE): minimizing 
empirical classification errors. 

–  Support Vector Machine (SVM): maximizing 
separation margin. 



Binary Classification Task 
•  Separating two classes using linear models 

Label: +1 Label: -1 



Perceptron 
•  Rosenblatt (1962) 
•  Linear models for two-class problems 

 
•  Perceptron algorithm: a very simple learning algorithm 
 

•  Randomly initialize w(0) and b(0), t=0 
•  For each sample (xi,yi)  (i=1,…,m) 

• Calculate the actual output: 
       hi(t) =  sign(f(xi))  
• On a mistake Update the weights upon mistakes: 
     w(t+1) = w(t) + yi xi 

      b(t+1) = b(t) + yi   
•  t = t + 1 

•  End for 



•  If the training data is linearly separable, then the 
perceptron is guaranteed to converge, and there is an 
uppper bound on the number of times the perceptron will 
adjust its weights during the training.  

 

•  Proof can be found:  

Convergence of Perceptron 

M�  w⇤·
P

t2I ytxt

||w⇤||  ||
P

t2I ytxt|| 
pP

t2I ||xt||2 
p

M



Linear Regression 
•  Find a good mapping from x to y (+1 or -1)  

Label: +1 Label: -1 



Linear Regression 
•  Find a good mapping from X to y: 

• Matrix inversion is expensive when x is high-dimension 
•  Linear regression does NOT work well for classification 
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Minimum Classification Error (MCE)  

•  Counting errors in training samples. 
 

 

(xi , yi ) ⇒
gi = −yixiw

T < 0 correct classification

gi = −yixiw
T > 0 wrong classification

⎧
⎨
⎪

⎩⎪

w* = argmin
w

H (gi )
i
∑ = argmin

w
H (yixiw

T )
i
∑

w* = argmin
w

l(gi )
i
∑ = argmin

w
l(yixiw

T )
i
∑

logistic sigmoid function l(x) = 1
1+ e−σ x



Minimum Classification Error  
(MCE)  

•  Optimization using gradient decent. 

•  The objective function (the smoothed training errors): 

•  The gradient is computed as: 

• May also use SGD …. 

 

 



Large-Margin Classifier: 
Support Vector Machine (SVM) 



Support Vector Machine (I) 

•  The decision boundary H should be as far away 
from the data of both classes as possible 

–  We should maximize the margin, m 

Class 1 

Class 2 

m 

H1 

H2 
H 



Support Vector Machine (II) 

•  The decision boundary can be found by solving the 
following constrained optimization problem: 

•  Convert to its dual problem: 

www T=2||||



Linearly Non-Separable cases 

• We allow “error” xi in classification " soft-margin SVM 

Class 1 

Class 2 



Support Vector Machine (III) 
•  Soft-margin SVM can be formulated as: 

•  It can be converted to the dual form: 
 

w* = min
w,ξi

1
2 || w ||2 + C ⋅ ξi

i
∑⎡

⎣⎢
⎤
⎦⎥

subject to
yi (xiw

T + b) > 1− ξi ξi > 0 (∀i)

+1 



Support Vector Machine (IV) 
•  Soft-margin SVM can be formulated as: 

•  Soft-margin SVM is equivalent to the following cost function: 

w* = min
w,ξi

1
2 || w ||2 + C ⋅ ξi

i
∑⎡

⎣⎢
⎤
⎦⎥

subject to
yi (xiw

T + b) > 1− ξi ξi > 0 (∀i)

+1 

f (xi ) =
yi (xiw

T + b)



Support Vector Machine (IV) 

•  For nonlinear separation boundary: 
–  use a Kernel function 

f(  ) 

f(  ) 

f(  ) 

f(  ) f(  ) 

f(  ) 

f(  ) 
f(  ) 

x → f(x) f(  ) 

f(  ) 

f(  ) 

f(  ) 

f(  ) 

f(  ) 

f(  ) 

f(  ) 
f(  ) 

f(  ) 

Feature space Input space 



Support Vector Machine (VI) 
•  Nonlinear SVM based on a nonlinear mapping: 

•  Replace it by a Kernel function 
 

•  Kernel trick: no need to know the original mapping 
function f() 



Support Vector Machine (VII) 
• Popular Kernel functions:  

–  Polynomial kernels 
 

–  Gaussian (RBF) kernels 

 



From 2-class to Multi-class 

• Use multiple 2-class classifiers  
–  One vs. One 
–  One vs. all 

• Direct Multi-class formulation  
–  Multiple linear discriminants  
–  MCE classifiers for N-class 
–  Multi-class SVMs 

 



Learning Dicriminative Models 
in general  

• The objective function for learning SVMs: 

• The objective fucntion for learning 
discriminative models in general: 

 
         Q   =    error function +  regularization term  

 



LP norm 
•  Lp norm is defined as: 
 

•  L2 norm (Eucleadian norm): 

•  L0 norm: num of non-zero entries  
 
 

•  L1 norm: 

•  L∞ norm (maximum norm):  



Lp norm in 3-D 

•  Lp norm constraints in 3-D: 
 
             || x ||p  ≤  1 
 



Ridge Regression 
• Ridge Regression =  Linear Regression + L2 norm 

 
• Closed form solution: 

 
 

 

 

2 



LASSO 
•  LASSO: least absolute shrinkage and selection operator 
•  LASSO =  Linear Regression + L1 norm 

 
 

•  Equivallent to  

•  Leading to sparse solution. 

•  Subgradient methods. 

 

 



Compressed Sensing  
•  a.k.a. Compressive Sensing; Sparse Coding 
•  A real object = sparse coding from a large dictionary  

 

 



Compressed Sensing  
• Math formulation: 

•  Or some simpler ones: 

 

 



Advanced Topics 

• Mutli-class SVMs 

• Max-margin Markov Networks 

•  Compressed Sensing (or Sparse Coding) 

•  Relevance Vector Machine  

•  Transductive SVMs 

 


