No. 6

Artificial Neural Networks

Hui Jiang

Department of Electrical Engineering and Computer Science York University, Toronto, Canada

Outline

- Neural Networks: background
- Network Structure
- Learning Criterion
- Optimization (SGD + Back-propagation)
- Fine-tuning tricks
- Advanced Topics on Deep Learning
- Other Network Structures (CNNs, RNNs/LSTMs)
- Sequence to Sequence Learning
- Unsupervised Learning (RBMs, auto-encoders, ...)

Brain: biological neuronal networks

brain

biological Neuronal nets

- 100 billion (10^{12}) neurons; 100 trillion (1015) connections.
- Neuron itself is simple.
- Connections and weights are more important in neuronal networks.
- Connections and weights are all learnable.

Artificial Neuron: a math model

- Linear combination + a nonlinear activation function
sigmoid
tanh

rectified linear (ReLU)

(Deep) (Artificial) Neural Networks

Sigmoid layer:

$$
\begin{aligned}
& \mathbf{a}^{(l)}=W^{(l)} \mathbf{z}^{(l-1)} \quad l=1,2, \cdots, L \\
& \mathbf{z}^{(l)}=\sigma\left(\mathbf{a}^{(l)}\right) \Rightarrow z_{k}^{(l)}=\frac{1}{1+e^{-a_{k}^{(l)}}} \quad l=1,2, \cdots, L
\end{aligned}
$$

Softmax layer:

$$
\begin{aligned}
& \mathbf{a}^{(L+1)}=W^{(L+1)} \mathbf{z}^{(L)} \\
& \mathbf{y}=\operatorname{softmax}\left(\mathbf{a}^{(L+1)}\right) \Rightarrow \mathbf{y}_{i}=\frac{e^{\mathbf{a}_{i}^{(L+1)}}}{\sum_{j=1}^{N} e^{\mathbf{a}_{j}^{(L+1)}}}
\end{aligned}
$$

Neural Networks: (a bit) theory

- Universal Approximator Theory, established around 1989-90
- G. Cybenko (1989); K. Hornik (1991)

Let $\varphi(\cdot)$ be a nonconstant, bounded, and monotonically-increasing continuous function. Let I_{m} denote the m-dimensional unit hypercube $[0,1]^{m}$. The space of continuous functions on I_{m} is denoted by $C\left(I_{m}\right)$. Then, given any function $f \in C\left(I_{m}\right)$ and $\varepsilon>0$, there exists an integer N, real constants $v_{i}, b_{i} \in \mathbb{R}$ and real vectors $w_{i} \in \mathbb{R}^{m}$, where $i=1, \cdots, N$, such that we may define:

$$
F(x)=\sum_{i=1}^{N} v_{i} \varphi\left(w_{i}^{T} x+b_{i}\right)
$$

as an approximate realization of the function f where f is independent of φ; that is,

$$
|F(x)-f(x)|<\varepsilon
$$

for all $x \in I_{m}$. In other words, functions of the form $F(x)$ are dense in $C\left(I_{m}\right)$.

- One hidden layer is theoretically sufficient, but it may becomes extremely large.

Neural Networks: (a bit) theory

- Universal Approximator Theory is a double-edged sword:
- Model is powerful
- Overfitting

$$
\text { data }=\text { signal }+ \text { noise }
$$

Learning Neural Networks is an optimization problem

- Given training data: $\left(x_{1}, t_{1}\right),\left(x_{2}, t_{2}\right), \ldots$
- Given a network to be learnt: $\mathbf{y}=\mathrm{f}(\mathrm{x}$ I W)
- The error function (the objective function)
- Mean square error (MSE):

$$
Q(\mathbf{W})=\sum_{i}\left(f\left(\mathbf{x}_{i} \mid \mathbf{W}\right)-t_{i}\right)^{2}
$$

- Cross entropy error (CE):

$$
Q(\mathbf{W})=\sum_{i} \operatorname{KL}\left(\left\{t_{i}\right\} \|\left\{f\left(\mathbf{x}_{i} \mid \mathbf{W}\right)\right\}\right)=-\sum_{t=1}^{N}\left\{\ln f\left(\mathbf{x}_{t} \mid \mathbf{W}\right)\right\}_{l_{i}}
$$

Gradient Descent

- Gradient Descent: hill-climbing

- Iteratively update network based on the gradient

$$
\mathbf{W}^{(l+1)}=\mathbf{W}^{(l)}-\left.\epsilon \cdot \frac{\partial Q(\mathbf{W})}{\partial \mathbf{W}}\right|_{\mathbf{W}=\mathbf{W}^{(l)}}
$$

Error Back-propagation (BP)

- The key problem: how to computer gradients in the most efficient way?
- The Error Back-Propagation (BP) Algorithm
- A local perspective on how BP works ...
- Based on the well-known chain rule in Calculus ...

Mini-batch Stochastic Gradient Descent

- Given all training data: $\left(x_{1}, t_{1}\right),\left(x_{2}, t_{2}\right), \ldots$
- Randomly select a mini-batch (10-1000 samples) of data
- For every sample in the mini-batch (x_{i}, t_{i})
- Forward pass: use NN to compute $x_{i} \rightarrow y_{i}$
- Accumulate error for the mini-batch Q_{i}
- Backward pass: back-propagate error Q_{i} to compute gradients
- Update network weights:

$$
\mathbf{W}^{(l+1)}=\mathbf{W}^{(l)}-\left.\epsilon \cdot \frac{\partial Q(\mathbf{W})}{\partial \mathbf{W}}\right|_{\mathbf{W}=\mathbf{W}^{(l)}}
$$

Neural Networks: how to compute gradients

- Define error signals in each layer: $\quad \mathbf{e}^{(l)}=\frac{\partial}{\partial \mathbf{a}^{(l)}} Q(\mathbf{W})$

$$
\frac{\partial}{\partial \mathbf{W}^{(l)}} Q(\mathbf{W})=\frac{\partial Q(\mathbf{W})}{\partial \mathbf{a}^{(l)}} \frac{\partial \mathbf{a}^{(l)}}{\partial \mathbf{W}^{(l)}}=\mathbf{e}^{(l)}\left(\mathbf{z}^{k-1}\right)^{\top}
$$

- Backward pass: back-propagate error signals through the whole network

Error Back-propagation (BP)

Multi-layer feedforward structure; sigmoid activations; cross-entropy errors
Given a training set $\mathbf{X}=\left\{\mathbf{x}_{t}, l_{t} \mid t=1,2, \cdots, N\right\}$

$$
Q(\mathbf{W})=-\sum_{t=1}^{N}\left\{\ln f\left(\mathbf{x}_{t} \mid \mathbf{W}\right)\right\}_{l_{t}}
$$

Compute the error signals for each layer:
Softmax layer I=L+1

$$
e_{t k}^{(L+1)}=\frac{1}{y_{l_{t}}\left(\mathbf{x}_{t}, \mathbf{W}\right)} \frac{\partial y_{l_{t}}\left(\mathbf{x}_{t}, \mathbf{W}\right)}{\partial a_{k}^{(L+1)}}=\delta\left(l_{t}-k\right)-y_{t_{t}}
$$

Sigmoid layer $\mathrm{I}=1,2, \ldots, \mathrm{~L}$

$$
\begin{aligned}
e_{t k}^{(l)} & =\frac{\partial Q_{t}(W)}{\partial a_{k}^{(l)}}=\sum_{j=1}^{N} \frac{\partial Q_{t}(W)}{\partial a_{j}^{(l+1)}} \frac{\partial a_{j}^{(l+1)}}{\partial a_{k}^{(l)}}=\sum_{j=1}^{N} e_{t j}^{(l+1)} \frac{\partial a_{j}^{(l+1)}}{\partial a_{k}^{(l)}}=\sum_{j=1}^{N} e_{t j}^{(l+1)} \cdot z_{k}^{(l)} \cdot\left(1-z_{k}^{(l)}\right) \cdot W_{k j}^{(l+1)} \\
& =z_{k}^{(l)} \cdot\left(1-z_{k}^{(l)}\right) \cdot \sum_{j=1}^{N} e_{t j}^{(l+1)} W_{j k}^{(l+1)}
\end{aligned}
$$

Neural Networks Learning in practice

- Open source toolkits: Tensorflow, Torch, CNTK, MXNet etc ...
- Computationally intensive (GPUs)
- Many tuning tricks:
- Mini-batch size
- Epoch
- Learning rates (annealing schedule)
- Network initialization
- Weight Decay (L2 norm regularization)
- Momentum
- Dropout
- Batch Normalization

Neural Networks Initialization

- NNs initialization is critical for a good convergence.
- Random Initialization is sufficient.
- Uniform distribution
- Norm distribution
- Controlling the dynamic range (variance) is the key.
- A widely used trick from Glorot and Bengio (2010):

$$
W \sim U\left[-\frac{\sqrt{6}}{\sqrt{n_{j}+n_{j+1}}}, \frac{\sqrt{6}}{\sqrt{n_{j}+n_{j+1}}}\right]
$$

Weight Decay

- Weight decaying is equivalent to L_{2} norm regularization.

$$
Q(\mathbf{W})+\lambda \cdot\|\mathbf{W}\|_{2}
$$

- Updating formula with weight decay:

$$
\mathbf{W}^{(l+1)}=\mathbf{W}^{(l)}-\left.\epsilon \cdot \frac{\partial Q(\mathbf{W})}{\partial \mathbf{W}}\right|_{\mathbf{W}=\mathbf{W}^{(l)}}-\lambda \cdot \mathbf{W}^{(l)}
$$

Momentum

- Momentum is a simple technique to accelerate convergence in slow but relevant directions, dampen oscillation in really steep directions.
- Averaging the velocity at each updating step:

$$
\begin{gathered}
\Delta \mathbf{W}^{(l+1)}=\left.\frac{\partial Q(\mathbf{W})}{\partial \mathbf{W}}\right|_{\mathbf{W}=\mathbf{W}^{(l)}}+\eta \cdot \Delta \mathbf{W}^{(l)} \\
\mathbf{W}^{(l+1)}=\mathbf{W}^{(l)}-\epsilon \cdot \Delta \mathbf{W}^{(l+1)}
\end{gathered}
$$

Image 2: SGD without momentum

Image 3: SGD with momentum

Dropout

- Dropbox is a simple regularization technique.
- Randomly drop-out some nodes in training.
- Equivalent to adding noises in training
- A relevant technique: data augmentation

(a) Standard Neural Net

(b) After applying dropout.

(c) At training time

(d) At test time

Other Optimization Algorithms

- In addition to SGD, many other optimization algorithms may be used:
- Nesterov accelerated gradient descent
- Adagrad
- Adadelta
- RMSprop
- Adam
- Hessian-free

Monitoring Three Learning Curves

- How does your learning go?
- The objective function
- The error rates in the training set
- The error rates in a development set

Insights from Figures

- Monitoring learning curves tells you a lot about the learning process ...

Figure 1

Figure 2

Figure 3

Neural Networks Structures

- Feedforward multi-layer DNNs
- Fixed-size input \rightarrow fixed-size output
- Memoryless
- Fully-connected \rightarrow input location sensitive
- Recurrent Neural networks (RNNs)
- Convolutional Neural Networks (CNNs)

RNNs

- Plain RNNs

- RNNs are notoriously hard to learn
- Computationally expensive
- Gradient vanishing or exploding
- Long Short-Term Memory (LSTM)

CNNs

- Each CNN layer: a convolution layer + a pooling layer
- Insensitive to input locations; suitable for image recognition

Neural Networks Learning in practice

- Open Source Toolkits:
- Google's Tensorflow (https://www.tensorflow.org/)
- Facebook's Torch and pyTorch (http://torch.ch/)
- Microsoft's CNTK (https://github.com/Microsoft/CNTK/wiki)
- MXNet (http://mxnet.io/)
- more

Advanced Topics in Deep Learning

- Convolutional Neural Networks (CNNs)
- Recurrent Neural Networks (RNNs) and LSTMs
- Sequence to Sequence Learning
- Bottleneck Features
- Unsupervised Learning:
- Restricted Boltzmann Machine (RBM)
- (De-noising) Auto-Encoder
- Generative Adversarial Networks

