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Statistical Data Modeling 
•  For any real problem, the true p.d.f.’s are always unknown, neither the 

forms of the functions nor the parameters. 
•  Our approach – statistical data modeling : based on the available sample 

data set, choose a proper statistical model to fit into the available data set. 
–  Data Modeling stage: once the statistical model is selected, its 

function form becomes known except the set of model parameters 
associated with the model are unknown to us. 

–  Learning (training) stage: the unknown parameters can be estimated 
by fitting the model into the data set based on certain estimation 
criterion.  

•  the estimated statistical model (assumed model format + estimated 
parameters) will give a parametric p.d.f. to approximate the real but 
unknown p.d.f. of each class. 

–  Decision (test) stage: the estimated p.d.f.’s are plugged into the 
optimal Bayes decision rule in place of the real p.d.f.’s                       
  !  plug-in MAP decision rule 

•  Not optimal any more but performs reasonably well in practice 
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Model Parameter Estimation (1) 
•  Maximum Likelihood (ML) Estimation: 

–  Objective function: likelihood function of all observed data 
–  ML method: most popular model estimation; simplest 
–  EM (Expected-Maximization) algorithm 
–  Examples: 

•  Univariate Gaussian distribution 
•  Multivariate Gaussian distribution 
•  Multinomial distribution 
•  Gaussian Mixture model (GMM) 
•  Markov chain model: n-gram for language modeling 
•  Hidden Markov Model (HMM) 

•  Bayesian Model Estimation 
–  The MAP (maximum a posteriori) estimation (point estimation) 
–  General Bayesian theory for parameter estimation 
–  Recursive Bayes Learning (Sequential Bayesian learning) 



Model Parameter Estimation (2) 
•  Discriminative Training: 

–  Maximum Mutual Information (MMI) Estimation 
•  The model is viewed as a noisy data generation channel 

 class id ω ! observation feature X. 
•  Determine model parameters to maximize mutual information 

between ω and X. (close relation between ω and X ) 
–  Minimum Classification Error (MCE) 

•  Objective function: empirical classification error (i.e., error 
rate in training data set). 

•  Optimize model parameters to minimize such empirical 
classification errors; iterative gradient descent methods. 

•  Minimum Discrimination Information (MDI): 
–  A p.d.f f(X|Λ) defined by model (with unknown parameters) 
–  A sample distribution p(X) derived directly from data based on 

some nonparametric methods 
–  Determine Λ to minimize KL-divergence between f(X|Λ)  and p(X).  



Maximum Likelihood Estimation (I) 

•  After data modeling, we know the model form (p.d.f.), i.e. 
p(X | ωi). For each class, we don’t know its parameters, 
e.g., θi. 

•  To show the dependence of p(X | ωi) on θi explicitly, we 
rewrite it as p(X | ωi ,θi ).  We assume p(X | ωi ,θi )  has a 
known parametric form. 

•  In pattern classification problem, we usually collect a 
sample set for each class, we have N data sets, D1,D2, 
…, DN. 

•  The parameter estimation problem: to use the 
information provided by the training samples D1,D2, …, 
DN to obtain good estimates for the unknown parameter 
vectors, θ1, θ2, … , θN, associated with each class. 



Maximum Likelihood Estimation (II) 
•  The Maximum Likelihood (ML) principle: we view the 

parameters as quantities whose values are fixed but 
unknown. The best estimate of their value is defined to 
be the one that maximizes the probability of observing 
the samples actually observed.  

–  Best interpret the data; 
–  Fit the data best. 

•  The likelihood function: 
 p(X | θ) ! data distribution p.d.f of different X if θ is 
given 

   p(X | θ)  ! likelihood function of θ if data X is given 



Maximum Likelihood Estimation (III) 

•  Problem: use information provided by D1,D2, …, DN to 
estimate θ1, θ2, …, θN. 

•  Assumption I: samples in Di give no information about θj 
if i!=j. Thus we estimate parameters for each class 
separately and estimate each θi solely based on Di.  

–  the joint estimation becomes: use a set D of training 
samples drawn independently from the probability 
density p(X | θ) to estimate the unknown parameter 
vector θ.  

•  Assumption II: all samples in each set Di are i.i.d. 
(independent and identically distributed), i.e., the 
samples are drawn independently according to the same 
probability law p(X | ωi).  



Maximum Likelihood Estimation (IV) 

•  Assume D contains n samples, X1, X2, …, Xn, since the samples were 
drawn independently from p(X | θ), thus the probability of observing D 
is  

•  If viewed as a function of θ, p(D|θ) is called the likelihood function of 
θ with respect to the sample set D. 

•  The maximum-likelihood estimate of θ is the value θML that maximizes 
p(D|θ).  

•  Intuitively, θML corresponds to the value of θ which in some senses 
best agrees with or supports the actually observed training samples. 
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Maximum Likelihood Estimation (V) 

•  In many cases, it is more convenient to work with the logarithm of 
the likelihood rather than the likelihood itself.  

•  Denote the log-likelihood function l(θ)= ln p(D|θ), we have 

•  How to do maximization in ML estimation: 
–  For simple models: differential calculus 

•  Single univariate/multivariate Gaussian model 
–  Model parameters with constraints: Lagrange optimization 

•  Multinomial/ Markov Chain model 
–  Complex models: Expectation-Maximization (EM) method 

•  GMM/HMM 
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Maximization:  
differential calculus 

•  The log-likelihood function: 

•  Assume θ is a p-component vector θ=(θ1, θ2,…, θp), and let       be 
the gradient operator as:    

•  Calculate 

•  Maximization is done by equating to zero:  
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Examples of ML estimation (1): 
Univariate Gaussian with unknown mean  
•  Training data D={x1, x2, … , xn}  (a set of scalar numbers) 
•  We decide to model the data by using a univariate Gaussian 

distribution, i.e., 

•  Assume we happen to know the variance, we only need to 
estimate the unknown mean from the data by using ML estimation. 

•  The log-likelihood function: 
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Examples of ML estimation(1): univariate 
Gaussian with unknown mean (cont’) 

•  Maximization: 

•  ML estimate of the unknown Gaussian mean is the sample mean. 
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Examples of ML estimation(2):  
multivariate Gaussian distribution  

•  Training data D={X1, X2, …, Xn}  (a set of vectors) 
•  We decide to model D with a multivariate Gaussian distribution 

•  Assume both mean vector and variance matrix are unknown. 
•  The log-likelihood function: 
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Examples of ML estimation(2):  
multivariate Gaussian distribution (Cont’)  
•  Maximization: 
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N-class pattern classification  
based on Gaussian models  

•  Given N classes {ω1, ω2, …, ωN}, for each class we collect a set of 
training samples, Di = {Xi1, Xi2, …, XiT}, for class ωi. 

•  For each sample in the training set, we observe its feature vector 
X as well as its true class id ω.  

•  If the feature vector is continuous and uni-modal, we may want to 
model each class by a multivariate Gaussian distribution, N(µ,Σ). 

•  Thus, we have N different multivariate distributions, N(µi,Σi) (i=1,2,
…,N), one for each class. 

•  The model forms are known but their parameters, µi and Σi (i=1,2,
…,N), are unknown. 

•  Use training data to estimate the parameters based on ML 
criterion.   Di ! µi and Σi  

•  Classifying any unknown pattern: when observing an unknown 
pattern, Y, classify with the estimated models based on the  

•      plug-in Bayes decision rule: 
ωY ≡ i* = argmax

i
p(ω i ) ⋅ p(Y |ω i ) = argmax

i
N(Y | µi

ML ,∑i
ML )



Linear and Quadratic 
Discriminant Analysis  

•  Pattern Classification: each class is modeled by a multivariate 
Gaussian 

•  Linear Discriminant Analysis 
–  Two Gaussians share the same covariance matrix 
–  The decision surface is a linear hyperplane  

•  Quadratic Discriminant Analysis 
–  Two Gaussians have different covariance matrices 
–  The decision surface is a Quadratic hyperbola  

 



Examples of ML estimation(3):  
Logistic Regression  

•  Two-class pattern Classification: rely on a sigmoid function 
•  Probability of Class 0: 
         Pr(ω=0|x) = Φ(w"x+b) = y 
•  Probability of Class 1:  
         Pr (ω=1|x) = 1-Φ(w"x+b) = 1-y 



Examples of ML estimation(3):  
Logistic Regression  

•  Logistic Regression: model parameters w and b  
• Maximum Likelihood Estimation 
   Given a trainined set (x1,t1), (x2,t2), … , (xN,tN) 
 
 
 
 
 
 
 
No closed-form solution; Requires an iterative optimization 
method, such as SGD, iterative reweighted least squares, etc. 

xn 



Multi-class Logistic Regression  

•  For multi-class pattern classification:  
•  Rely on a soft-max function: 

 
• Model parameters: wk, bk  (k=1,2, …)   
• Maximum Likelihood Estimation:  
        xk

m  : m-th sample from class k 
 



Examples of ML estimation(4):  
multinomial distribution (I) 

•  A DNA sequence consists of a sequence of 4 different types of 
nucleotides (G, A, T, C). For example, 

•  If assume all nucleotides in a DNA sequence are independent, we 
can use multinomial distribution to model a DNA sequence, 

•  Use p1 to denote probability to observe G in any one location, p2 for 
A, p3 for T, p4 for C. 

•  Obviously, it meets                    . (a constraint in its parameters) 
•  Given a DNA sequence X, the probability to observe X is 

 

X= GAATTCTTCAAAGAGTTCCAGATATCCACAGGCAGATTCTACAAAAGAAGTGTTTCAATACTGCTCTATC 
        AAAAGATGTATTCCACTCAGTTACTTTCATGCACACATCTCAATGAAGTTCCTGAGAAAGCTTCTGTCTA 
        GTTTTTATGTGAAAATATTTCCTTTTCCATCATGGGCCTCAAAGCGCTCAAAATGAACCCTTGCAGATAC 
       TAGAGAAAGACTGTTTCAAAACTGCTCTATCCAAAGAACGGTTCCACTCTGTGAGGTGAATGCACACATC 
       ACAAAGCAGTTTCTGAGAACGCTTCTGTCTAGTTTGTAGGTGAAGATATTTCCTTTTCCTTCATAGGCCT 
       CTAATCGCTCCAAATATCCACAAGCAGATTCTTCAAAATGTGTGTTTCAACACTGCTCTATCAAAAGAAA 
       GGTTCAAGTCTGTGAGTTGAATGCACACATCACAAAGCAGTTTCTGAGAATGCCTCTGTCTAGTTTGTAT 
       GTGAAGATATTTCTTTTTCCGTCTTATGCCTCAAATCGCTCCAAATATCCACTTGCAGATACTTCAAAA  
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Examples of ML estimation(4):  
multinomial distribution (II) 

 
•  Where N1 is frequency of G appearing in X, N2 frequency of A, N3 

frequency of T, N3 frequency of C. 
•  Problem: estimate p1, p2, p3, p4 from a training sequence X based on 

the maximum likelihood criterion. 
•  The log-likelihood function: 

•  Where N1 is frequency of G in training sequence X, the similar for 
N2, N3 and N4. 

•  Maximization l(.) subject to the constraint  
•  Use Lagrange optimization: 
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Examples of ML estimation(4):  
multinomial distribution (III) 

 •  Finally, we get the ML estimation for the multinomial distribution as: 

•  We only need count the occurrence times (frequency) of each 
nucleotides in all training sequences, then the ML estimate can be 
easily calculated as above. 

•  Similar derivation also holds for Markov chain model. 
–  It has an important application in language modeling, the so-

called n-gram model. 
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Examples of ML estimation(5):  
Markov Chain Model (I) 

• Markov assumption: a discrete-time Markov chain is a 
random sequence x[n] whose n-th conditional 
probability function satisfy: 

       p(x[n] | x[n-1]x[n-2]…x[n-N]) = p(x[n] | x[n-1]) 

•  In other words, probability of observing x[n] only 
depends on its previous one x[n-1] (for 1st order Markov 
chain) or the most recent history (for higher order 
Markov chain). 

•  Parameters in Markov Chain model are a set of 
conditional probability functions. 



Examples of ML estimation(5):  
Markov Chain Model (II) 

•  Stationary assumption:  
 p(x[n] | x[n-1]) = p(x[n’] | x[n’-1]) for all n and n’. 

•  For stationary discrete Markov Chain model:  
–  Only one set of conditional probability function  

  
•  Discrete observation: in practice, the range of values 

taken on by each x[n] is finite, which is called state 
space. Each distinct one is a Markov state.  

–  An observation of a discrete Markov chain model 
becomes a sequence of Markov states. 

–  The set of conditional probs # transition matrix 



Examples of ML estimation(5):  
Markov Chain Model (III) 

•  Markov Chain Model (stationary & discrete): 
–  A finite set of Markov states, to say M states. 
–  A set of state conditional probabilities, i.e., transition matrix 
    In 1st order Markov chain model,  aij = p(j|i)   (i,j=1,2,…,M) 
 

•  Markov Chain model can be represented by a directed graph. 
–  Node # Markov state 
–  Arc  # state transition (each arc attached with a transition 

probability) 
–  A Markov chain observation can be viewed as a path traversing 

a Markov chain model.  

•  Probability of observing a Markov chain can be calculated based 
on the path and the transition matrix.     



Examples of ML estimation(5):  
Markov Chain Model (IV) 

·  First-order Markov Chain Model for DNA sequence 
     Full Transition matrix (6 

by 6) 
 
p(A|G)  =  0.16 
p(C|G)  =  0.34 
p(G|G)  =  0.38 
p(T|G)  =   0.12 
… 
… 
 
One transition 
probability is attached 
with each arc. 

Pr(GAATTC) = p(begin)p(G|begin)p(A|G)p(A|A)p(T|A)p(T|T)p(C|T)p(end|C) 



Examples of ML estimation(5):  
Markov Chain Model (V) 

•  Markov Chain Model for language modeling (n-gram) 
–  Each word is a Markov state, total N words (vocabulary size) 
–  A set of state (word) conditional probabilities 

•  Given any a sentence: 
 S = I would like to fly from New York to Toronto this Friday 

•  1st-order Markov chain model:  N*N conditional probabilities 
  Pr(S) = p(I|begin) p(would|I) p(like|would) p(to|like) p(fly|to) … 

–  This is called bi-gram model 
•  2nd-order Markov chain model: N*N*N 
   Pr(S) = p(I|begin) p(would|I,begin) p(like|would,I) p(to|like,would) p(fly|to,like) … 

–  This is called tri-gram model 
•  Multinomial (0th-order Markov chain): N probabilities  
   Pr(S) = p(I) p(would) p(like) p(to) p(fly) … 

–  This is called uni-gram model 



Examples of ML estimation(5):  
Markov Chain Model (VI) 

•  How to estimate Markov Chain Model from training data  
–  Similar to ML estimate of multinomial distribution 
–  Maximization of log-likelihood function with constraints. 

•  Results: 

    

•  Generally, N-gram model: a large number of probabilities to be 
estimated.  
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Examples of ML estimation(6):  
Gaussian Mixture Model (GMM) (I) 

•  Single Gaussian distribution (either univariate or multivariate) is a 
single mode distribution.  

•  In many cases, the true distribution of data is complicate and has 
multiple modes in nature. 

•  For this kind of applications, better to use a more flexible model 
–  Gaussian Mixture model (GMM) 
–  A GMM can be tuned to approximate any arbitrary distribution 

x 

Distribution of speech features   
over a large population 



Examples of ML estimation(6):  
Gaussian Mixture Model (GMM) (II) 

•  Gaussian Mixture model (GMM) 
–  Univariate density 

–  Multivariate density 

–  GMM is a mixture of single Gaussian distribution (each one is 
called mixand) which have different means and variances. 

–  ωk is called mixture weight, prior probability of each mixand.  
       They satisfy                . 

•  GMM is widely used for speaker recognition, audio classification, 
audio segmentation, etc. 
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Examples of ML estimation(6):  
Gaussian Mixture Model (GMM) (III) 

•  However, estimation of a GMM is not trivial. 
•  Consider a simple case:  

–  We have a set of training data D={x1,x2,… ,xn} 
–  Use a 2-mixture GMM to model it: 

–  We try to get ML estimate of µ1, σ1, µ2, σ2 from training data. 
–  Simple maximization based on differential calculus does not work. 

•  For each xi, we don’t know which mixand it comes from. The 
number of item in likelihood function p(D| µ1, σ1, µ2, σ2) 
increases exponentially as we observe more and more data. 

•  No simple solution. 
•  Need alternative method – Expectation Maximization (EM) algorithm 
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The Expectation-Maximization  
(EM) Algorithm (I) 

•  EM algorithm is an iterative method of obtaining maximum likelihood 
estimate of model parameters. 

•  EM suits best to the so-called missing data problem: 
–  Only observe a subset of features, called observed, X. 
–  Other features are missing or unobserved, denoted as Y. 
–  The complete data Z={X,Y}.  
–  If given the complete data Z, it is usually easy to obtain ML 

estimation of model parameters. 
–  How to do ML estimation based on observed X only?? 



Expectation-Maximization (EM) 
Algorithm (II) 

•  Initialization: find an initial values for unknown parameters 

•  EM algorithm consists of two steps: 
–  Expectation (E-step): the expectation is calculated with respect 

of the missing data Y, using the current estimate of the 
unknown parameters and conditioned upon the observed X.  

–  Maximization (M-step): provides a new estimate of unknown 
parameters (better than the initial ones) in terms of maximizing 
the above expectation # increasing likelihood function of 
observed. 

•  Iterate until convergence   



EM Algorithm(1): E-step 
•  E-step: form an auxiliary function 

–  The expectation of log-likelihood function of complete data is 
calculated based on the current estimate of unknown parameter, 
and conditioned on the observed data. 

–                   is a function of θ with       assumed to be fixed. 
–  If missing data Y is continuous: 

–  If missing data Y is discrete: 
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EM Algorithm(2): M-step 

• M-step: choose a new estimate           which 
maximizes  

–             is a better estimate in terms of 
increasing likelihood value p(X|θ) than      

•  Replace           with         and iterate until 
convergence. 
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EM Algorithm(3) 

•  EM algorithm guarantees that the log-likelihood of the observed 
data  p(X|θ) will increase monotonically. 

•  EM algorithm may converge to a local maximum or global 
maximum. And convergence rate is reasonably good. 

•  Applications of the EM algorithm: 
–  ML estimation of some complicated models,  

  e.g., GMM, HMM, … (in general mixture models of e-family) 
–  ET (emission tomography) image reconstruction 
–  Active Noise Cancellation (ANC) 
–  Spread-spectrum multi-user communication 



An Application of EM algorithm: 
ML estimation of multivariate GMM(I) 
•  Assume we observe a data set D={X1,X2,…,XT} (a set of vectors) 
•  We decide to model the data by using multivariate GMM: 

•  Problem: use data set D to estimate GMM model parameters, 
including ωk, µk, Σk (k=1,2,…,K). 

•  If we know the label of mixand lt from which each data Xt come 
from, the estimation is easy. 

•  Since the mixand label is not available in training set, we treat it 
as missing data: 

–  Observed data: D={X1,X2,…,XT}. 
–  Missing data: L={l1, l2, …, lT}. 
–  Complete data: {D,L} = {X1, l1, X2, l2, …, XT, lT}  
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An Application of EM algorithm: 
MLE of multivariate GMM(II) 

•  E-step: 
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An Application of EM algorithm: 
MLE of multivariate GMM(III) 

• M-Step: 
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An Application of EM algorithm: 
MLE of multivariate GMM(IV) 

•  where 

•  Iterative ML estimation of GMM 
–  Initiation: choose                      . Usually use vector clustering 

algorithm (such as K-means) to cluster all data into K 
clusters. Each cluster is used to train for one Gaussian mix. 

–  i=0; 
–  Use EM algorithm to refine model estimation 

–  i++, go back until convergence.  
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GMM Initialization:  
K-Means clustering 

 •  K-Means Clustering: a.k.a. unsupervised learning 

•  Unsupervisedly cluster a data set into many homogeneous groups  

•  K-Means algorithm: 
–  step 1:  assign all data into one group; calculate centroid. 
–  step 2:  choose a group and split.  
–  step 3:  re-assign all data  to groups. 
–  step 4:  calculate centroids for all groups. 
–  step 5:  go back to step 3 until convergence. 
–  step 6:  stop until K classes 

•  Basics for clustering: 
–  distance measure 
–  centroid calculation 
–  choose a group and split 



Bayesian Theory 
•  Bayesian methods view model parameters as random variables 

having some known prior distribution. (Prior specification) 
–  Specify prior distribution of model parameters θ as p(θ). 

•  Training data D allow us to convert the prior distribution into a 
posteriori distribution. (Bayesian learning) 

•  We infer or decide everything solely based on the posteriori 
distribution. (Bayesian inference) 

–  Model estimation: the MAP (maximum a posteriori) estimation 
–  Pattern Classification: Bayesian classification 
–  Sequential (on-line, incremental) learning 
–  Others: prediction, model selection, etc. 
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Bayesian Learning 
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The MAP estimation of  
model parameters 

•  Do a point estimate about θ based on the posteriori distribution 

•  Then θMAP is treated as estimate of model parameters (just like ML 
estimate). Sometimes need the EM algorithm to derive it. 

•  MAP estimation optimally combine prior knowledge with new 
information provided by data. 

•  MAP estimation is used in speech recognition to adapt speech 
models to a particular speaker to cope with various accents 

–  From a generic speaker-independent speech model ! prior 
–  Collect a small set of data from a particular speaker 
–  The MAP estimate give a speaker-adaptive model which suit 

better to this particular speaker. 
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Bayesian Classification 
•  Assume we have N classes, ωi (i=1,2,…,N), each class has a class-

conditional pdf p(X|ωi,θi) with parameters θi.  
•  The prior knowledge about θi is included in a prior p(θi). 
•  For each class ωi, we have a training data set Di. 
•  Problem: classify an unknown data Y into one of the classes. 
•  The Bayesian classification is done as: 
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Recursive Bayes Learning 
(On-line Bayesian Learning)  

•  Bayesian theory provides a framework for on-line learning (a.k.a. 
incremental learning, adaptive learning).  

•  When we observe training data one by one, we can dynamically 
adjust the model to learn incrementally from data. 

•  Assume we observe training data set D={X1,X2,…,Xn} one by one, 
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How to specify priors 
•  Noninformative priors 

–  In case we don’t have enough prior knowledge, just 
use a flat prior at the beginning. 

•  Conjugate priors: for computation convenience 
–  For some models, if their probability functions are a 

reproducing density, we can choose the prior as a 
special form (called conjugate prior), so that after 
Bayesian leaning the posterior will have the exact 
same function form as the prior except the all 
parameters are updated.  

–  Not every model has conjugate prior. 



Conjugate Prior 
•  For a univariate Gaussian model with only unknown mean: 

•  If we choose the prior as a Gaussian distribution (Gaussian’s 
conjugate prior is Gaussian) 

•  After observing a new data x1, the posterior will still be Gaussian: 
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        where

]
2

)(
exp[

2

1
),|()|(

σσ
σσσ

µ
σσ

σ
σσ

σµ

σ
µµ

πσ
σµµµ

+
=

+
+

+
=

−−==

x

Nxp



The sequential  MAP Estimate  
of Gaussian  

•  For univariate Gaussian with unknown mean, the 
MAP estimate of its mean after observing x1: 

•  After observing next data x2: 
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