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Abstract

This paper provides guidance to some of the concepts surrounding recurrent neural
networks. Contrary to feedforward networks, recurrent networks can be sensitive, and be
adapted to past inputs. Backpropagation learning is described for feedforward networks,
adapted to suit our (probabilistic) modeling needs, and extended to cover recurrent net-
works. The aim of this brief paper is to set the scene for applying and understanding
recurrent neural networks.

1 Introduction

It is well known that conventional feedforward neural networks can be used to approximate
any spatially finite function given a (potentially very large) set of hidden nodes. That
is, for functions which have a fixed input space there is always a way of encoding these
functions as neural networks. For a two-layered network, the mapping consists of two
steps,

y(t) = G(F (x(t))). (1)

We can use automatic learning techniques such as backpropagation to find the weights of
the network (G and F ) if sufficient samples from the function is available.

Recurrent neural networks are fundamentally different from feedforward architectures
in the sense that they not only operate on an input space but also on an internal state
space – a trace of what already has been processed by the network. This is equivalent
to an Iterated Function System (IFS; see (Barnsley, 1993) for a general introduction to
IFSs; (Kolen, 1994) for a neural network perspective) or a Dynamical System (DS; see
e.g. (Devaney, 1989) for a general introduction to dynamical systems; (Tino et al., 1998;
Casey, 1996) for neural network perspectives). The state space enables the representation
(and learning) of temporally/sequentially extended dependencies over unspecified (and
potentially infinite) intervals according to

y(t) = G(s(t)) (2)

s(t) = F (s(t− 1), x(t)). (3)

∗This document was mainly written while the author was at the Department of Computer Science, Univer-
sity of Skövde.

1



To limit the scope of this paper and simplify mathematical matters we will assume
that the network operates in discrete time steps (it is perfectly possible to use continuous
time instead). It turns out that if we further assume that weights are at least rational
and continuous output functions are used, networks are capable of representing any Tur-
ing Machine (again assuming that any number of hidden nodes are available). This is
important since we then know that all that can be computed, can be processed1 equally
well with a discrete time recurrent neural network. It has even been suggested that if real
weights are used (the neural network is completely analog) we get super-Turing Machine
capabilities (Siegelmann, 1999).

2 Some basic definitions

To simplify notation we will restrict equations to include two-layered networks, i.e. net-
works with two layers of nodes excluding the input layer (leaving us with one ’hidden’ or
’state’ layer, and one ’output’ layer). Each layer will have its own index variable: k for
output nodes, j (and h) for hidden, and i for input nodes. In a feed forward network, the
input vector, x, is propagated through a weight layer, V,

yj(t) = f(netj(t)) (4)

netj(t) =
n∑

i

xi(t)vji + θj (5)

where n is the number of inputs, θj is a bias, and f is an output function (of any differ-
entiable type). A network is shown in Figure 1.

In a simple recurrent network, the input vector is similarly propagated through a
weight layer, but also combined with the previous state activation through an additional
recurrent weight layer, U,

yj(t) = f(netj(t)) (6)

netj(t) =
n∑

i

xi(t)vji +
m∑

h

yh(t− 1)ujh) + θj (7)

where m is the number of ’state’ nodes.
The output of the network is in both cases determined by the state and a set of output

weights, W,

yk(t) = g(netk(t)) (8)

netk(t) =
m∑

j

yj(t)wkj + θk (9)

where g is an output function (possibly the same as f).

1I am intentionally avoiding the term ’computed’.
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Figure 1: A feedforward network.
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Figure 2: A simple recurrent network.
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3 The principle of backpropagation

Any network structure can be trained with backpropagation when desired output patterns
exist and each function that has been used to calculate the actual output patterns is
differentiable. As with conventional gradient descent (or ascent), backpropagation works
by, for each modifiable weight, calculating the gradient of a cost (or error) function with
respect to the weight and then adjusting it accordingly.

The most frequently used cost function is the summed squared error (SSE). Each
pattern or presentation (from the training set), p, adds to the cost, over all output units,
k.

C =
1
2

n∑
p

m∑

k

(dpk − ypk)2 (10)

where d is the desired output, n is the total number of available training samples and m
is the total number of output nodes.

According to gradient descent, each weight change in the network should be propor-
tional to the negative gradient of the cost with respect to the specific weight we are
interested in modifying.

∆w = −η
∂C

∂w
(11)

where η is a learning rate.
The weight change is best understood (using the chain rule) by distinguishing between

an error component, δ = −∂C/∂net, and ∂net/∂w. Thus, the error for output nodes is

δpk = − ∂C

∂ypk

∂ypk

∂netpk
= (dpk − ypk)g′(ypk) (12)

and for hidden nodes

δpj = −(
m∑

k

∂C

∂ypk

∂ypk

∂netpk

∂netpk

ypj
)

∂ypj

∂netpj
=

m∑

k

δpkwkjf
′(ypj). (13)

For a first-order polynomial, ∂net/∂w equals the input activation. The weight change is
then simply

∆wkj = η

n∑
p

δpkypj (14)

for output weights, and

∆vji = η

n∑
p

δpjxpi (15)

for input weights. Adding a time subscript, the recurrent weights can be modified accord-
ing to

∆ujh = η

n∑
p

δpj(t)yph(t− 1). (16)

A common choice of output function is the logistic function

g(net) =
1

1 + e−net
. (17)
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The derivative of the logistic function can be written as

g′(y) = y(1− y). (18)

For obvious reasons most cost functions are 0 when each target equals the actual output
of the network. There are, however, more appropriate cost functions than SSE for guiding
weight changes during training (Rumelhart et al., 1995). The common assumptions of
the ones listed below are that the relationship between the actual and desired output is
probabilistic (the network is still deterministic) and has a known distribution of error.
This, in turn, puts the interpretation of the output activation of the network on a sound
theoretical footing.

If the output of the network is the mean of a Gaussian distribution (given by the
training set) we can instead minimize

C = −
n∑
p

m∑

k

(ypk − dpk)2

2σ2
(19)

where σ is assumed to be fixed. This cost function is indeed very similar to SSE.
With a Gaussian distribution (outputs are not explicitly bounded), a natural choice

of output function of the output nodes is

g(net) = net. (20)

The weight change then simply becomes

∆wkj = η

n∑
p

(dpk − ypk)ypj . (21)

If a binomial distribution is assumed (each output value is a probability that the desired
output is 1 or 0, e.g. feature detection), an appropriate cost function is the so-called cross
entropy,

C =
n∑
p

m∑

k

dpk ln ypk + (1− dpk) ln(1− ypk). (22)

If outputs are distributed over the range 0 to 1 (as here), the logistic output function is
useful (see Equation 17). Again the output weight change is

∆wkj = η

n∑
p

(dpk − ypk)ypj . (23)

If the problem is that of “1-of-n” classification, a multinomial distribution is appro-
priate. A suitable cost function is

C =
n∑
p

m∑

k

dpk ln
enetk

∑
q enetq

(24)

where q is yet another index of all output nodes. If the right output function is selected,
the so-called softmax function,

g(netk) =
enetk

∑
q enetq

, (25)

the now familiar update rule follows automatically,

∆wkj = η

n∑
p

(dpk − ypk)ypj . (26)

As shown in (Rumelhart et al., 1995) this result occurs whenever we choose a probability
function from the exponential family of probability distributions.
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Figure 3: A “tapped delay line” feedforward network.

4 Tapped delay line memory

The perhaps easiest way to incorporate temporal or sequential information into a training
situation is to make the temporal domain spatial and use a feedforward architecture.
Information available back in time is inserted by widening the input space according to
a fixed and pre-determined “window” size, X = x(t),x(t− 1),x(t− 2), ...,x(t− ω) (see
Figure 3). This is often called a tapped delay line since inputs are put in a delayed buffer
and discretely shifted as time passes.

It is also possible to manually extend this approach by selecting certain intervals “back
in time” over which one uses an average or other pre-processed features as inputs which
may reflect the signal decay.

The classical example of this approach is the NETtalk system (Sejnowski and Rosen-
berg, 1987) which learns from example to pronounce English words displayed in text at
the input. The network accepts seven letters at a time of which only the middle one is
pronounced.

Disadvantages include that the user has to select the maximum number of time steps
which is useful to the network. Moreover, the use of independent weights for processing
the same components but in different time steps, harms generalization. In addition, the
large number of weights requires a larger set of examples to avoid over-specialization.

5 Simple recurrent network

A strict feedforward architecture does not maintain a short-term memory. Any memory
effects are due to the way past inputs are re-presented to the network (as for the tapped
delay line).
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Figure 4: A simple recurrent network.

A simple recurrent network (SRN; (Elman, 1990)) has activation feedback which em-
bodies short-term memory. A state layer is updated not only with the external input of
the network but also with activation from the previous forward propagation. The feed-
back is modified by a set of weights as to enable automatic adaptation through learning
(e.g. backpropagation).

5.1 Learning in SRNs: Backpropagation through time

In the original experiments presented by Jeff Elman (Elman, 1990) so-called truncated
backpropagation was used. This basically means that yj(t − 1) was simply regarded as
an additional input. Any error at the state layer, δj(t), was used to modify weights from
this additional input slot (see Figure 4).

Errors can be backpropagated even further. This is called backpropagation through
time (BPTT; (Rumelhart et al., 1986)) and is a simple extension of what we have seen
so far. The basic principle of BPTT is that of “unfolding.” All recurrent weights can
be duplicated spatially for an arbitrary number of time steps, here referred to as τ .
Consequently, each node which sends activation (either directly or indirectly) along a
recurrent connection has (at least) τ number of copies as well (see Figure 5).

In accordance with Equation 13, errors are thus backpropagated according to

δpj(t− 1) =
m∑

h

δph(t)uhjf
′(ypj(t− 1)) (27)

where h is the index for the activation receiving node and j for the sending node (one time
step back). This allows us to calculate the error as assessed at time t, for node outputs
(at the state or input layer) calculated on the basis of an arbitrary number of previous
presentations.
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Figure 5: The effect of unfolding a network for BPTT (τ = 3).
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It is important to note, however, that after error deltas have been calculated, weights
are folded back adding up to one big change for each weight. Obviously there is a greater
memory requirement (both past errors and activations need to be stored away), the larger
τ we choose.

In practice, a large τ is quite useless due to a “vanishing gradient effect” (see e.g.
(Bengio et al., 1994)). For each layer the error is backpropagated through the error
gets smaller and smaller until it diminishes completely. Some have also pointed out that
the instability caused by possibly ambiguous deltas (e.g. (Pollack, 1991)) may disrupt
convergence. An opposing result has been put forward for certain learning tasks (Bodén
et al., 1999).

6 Discussion

There are many variations of the architectures and learning rules that have been discussed
(e.g. so-called Jordan networks (Jordan, 1986), and fully recurrent networks, Real-time
recurrent learning (Williams and Zipser, 1989) etc). Recurrent networks share, however,
the property of being able to internally use and create states reflecting temporal (or even
structural) dependencies. For simpler tasks (e.g. learning grammars generated by small
finite-state machines) the organization of the state space straightforwardly reflects the
component parts of the training data (e.g. (Elman, 1990; Cleeremans et al., 1989)).
The state space is, in most cases, real-valued. This means that subtleties beyond the
component parts, e.g. statistical regularities may influence the organization of the state
space (e.g. (Elman, 1993; Rohde and Plaut, 1999)). For more difficult tasks (e.g. where
a longer trace of memory is needed, and context-dependence is apparent) the highly non-
linear, continous space offers novel kinds of dynamics (e.g. (Rodriguez et al., 1999; Bodén
and Wiles, 2000)). These are intriguing research topics but beyond the scope of this
introductory paper. Analyses of learned internal representations and processes/dynamics
are crucial for our understanding of what and how these networks process. Methods
of analysis include hierarchical cluster analysis (HCA), and eigenvalue and eigenvector
characterizations (of which Principal Components Analysis is one).
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