start

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
start [2012/08/30 18:37] hjstart [2019/08/22 21:28] (current) hj
Line 1: Line 1:
 ~~NOTOC~~ ~~NOTOC~~
-====== CSE 6328E Speech and Language Processing (Winter 2012) ======+====== EECS 6327 Probabilistic Models & Machine Learning (Winter 2018) ======
  
 ===== Description  ===== ===== Description  =====
  
-The course introduces some basic statistical modeling methods in pattern recognition and machine learning and their applications to speech and language processing. The covered topics may include:    +The course introduces some probabilistic models and machine learning methods. The covered topics may include:    
-  * Bayesian Decision theory, Generative vs Discriminative modeling +  * Bayesian Decision theory, Generative vs Discriminative modelling 
-  * Generative Models - multivariate Gaussian, Gaussian mixture model (GMM), hidden Markov model (HMM), Multinomial, Markov chain model, n-gram, graphical models +  * Generative Models (1) - multivariate Gaussian, Gaussian mixture model (GMM),  Multinomial, Markov chain model, n-gram 
-  * Discriminative Models - linear discriminant, logistic regression, support vector machines (SVM), neural networks (NN), sparse kernel machines   +  * Generative Models (2) - graphical modelsdirected vs. indirected graphical models, exact inference, approximate inference (loopy belief propagation, variational inference, Monte Carlo methods) 
-  * Statistical Modeling Methods - maximum likelihood estimation (MLE), Expectation-Maximization (EM), discriminative training (DT+  * Discriminative Models (1) - linear discriminant, linear regression, lasso, logistic regression, support vector machines (SVM), sparse kernel machines 
-  * Some selected applications - speech recognitiontext categorizationmachine translationspoken language processing+  * Discriminative Models (2) - neural networks (NN),  back-propagation,  deep learning,   auto-encoder; recurrent neural networks, convolutional neural networks 
 +  * Advanced models: hidden Markov model (HMM),  Latent Dirichlet Allocation (LDA), Conditional Random Fields (CRF), Convolutional Neural Nets, Recurrent Neural Nets and LSTMs 
 +  * Advanced topics: LearnabilityGaussian ProcessesEnsemble MethodsReinforcement Learning, etc.
  
-The above methods are equally applicable to other research areas, such as data mining, information retrieval, computer vision, computational linguistics and so on. 
  
 ===== Announcements ===== ===== Announcements =====
Line 19: Line 20:
 ===== Lecture Times ===== ===== Lecture Times =====
  
-  * Section M: Tuesdays and Thursdays, 11:30am 1:00pm, <del>FRQ 045 (Farquharson Life Sciences building)</del> **CSEB 2002**+  * Section A: Tuesdays and Thursdays, 4:00pm 5:30pmlocated at <del>BC228</del> **SC 214**.
  
 ===== Lecturer ===== ===== Lecturer =====
  
   * Prof. [[http://www.cse.yorku.ca/~hj|Hui Jiang]] @ CSEB3014   * Prof. [[http://www.cse.yorku.ca/~hj|Hui Jiang]] @ CSEB3014
start.1346351834.txt.gz · Last modified: 2012/08/30 18:37 by hj

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki