EECS2301E

Lab 7

Fall 2018

Lab Objectives

Dealing with matrix operation and transitive closure problem

Problem 1

Given a graph with nodes (vertices) $1 . . n$, the adjacency matrix of a graph is a matrix of 1 's and 0 's such that if element $a_{i, j}=1$ then there is a link between nodes i and j where $i \leq i, j \leq n$ For example the djacency matrix of the following graph

$\left[\begin{array}{cccc}0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0, & 0\end{array}\right]$ The transitive closure of this matrix is $\left[\begin{array}{cccc}0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1, & 1\end{array}\right]$

Algorithm
Input: The adjacency matrix of a relation R on a set with n elements.
Output: The adjacency matrix T of the transitive closure of R.
Procedure: from https://www.cs.nmsu.edu/~ipivkina/TransClosure/

```
Start with T=A.
For each j from 1 to n
        For each i from 1 to n
            If T(i,j)=1, then form the Boolean or of row i and row j
                        and replace row i by it.
            Go on to the next i-value.
    Once you have processed each i-value, go on to the next j-value.
```

The input is the number of nodes in the graph n followed by the n^{2} elements of the matrix

