
1

EECS 3221.3
Operating System Fundamentals

Prof. Hui Jiang
Department of Electrical Engineering and Computer

Science, York University

No. 10

 Virtual Memory

Background
•  Memory-management methods normally requires the entire process

to be in memory before the process can execute.
•  Better not to load the whole process in memory for execution:

–  Programs often have code to handle unusual error conditions.
–  Arrays, lists, and tables are often allocated more memory than

they actually need.
–  Certain options and features of a program may be used rarely.
–  Even all codes are needed, they may not all be needed at the

same time.
•  Our goal: partially load a process.

–  No longer be constrained by the amount of physical memory.
–  Each process takes less memory ! CPU utilization and

throughput up.
–  Less I/O to load program ! run faster.

2

Logical Memory Space (review)

Disk (>20G)

Physical
Memory
(128M)

Virtual Memory: concept

Logical Memory (>1G)

3

Demand Paging(1)
•  Demand paging:

–  A paging system with a lazy page swapper.
–  A lazy swapper: never swap a page into memory unless the page

will be used.

•  In demand paging:
–  When a process is executed,
–  The pager guess which pages are needed. (optional)
–  The pager brings only these necessary pages into memory.

(optional)
–  When referring a page not in a memory, the pager bring it in as

needed and possibly replace an old page when no more free
space.

•  Hardware support: to distinguish those pages in memory and those
pages in disk.

–  Use valid-invalid bit.

An example: Demand Paging

Disk

A
B
C
D
E
F
G
H

0
1

2

3

4

5

6
7

Logical
Memory

4 v

 i

6 v

 i

 i

9 v

 i

 i

0
1

2

3

4

5

6

7

page-
table

C

F

0
1
2
3
4
5
6
7

8
9
10

11

12
13
14
15

A

A B C

D E F

Physical memory

4

Handle a page fault

Handle a Page Fault

•  Check an internal table to see if the reference was a valid or invalid
memory access.

•  If invalid, terminate the process; If valid, this page is on disk. Need
page it into memory.

•  Find a free frame from the free-frame list. (if no free frame, need
replace an old page)

•  Schedule a disk operation to read the desired page into the newly
allocated frame.

•  When the disk read is complete, modify the internal table and page
table to set the bit as valid to indicate this page is now in memory.

•  Restart the instruction that was interrupted. The process can now
access the page as though it had always been in memory

The interrupt handler program to handle page fault in virtual memory:

5

Handle a Page Fault (more details)
•  Trap to the OS
•  Save the user registers and process status.
•  Determine the interrupt was a page fault.
•  Determine the location of the page on the disk.
•  Find a free frame from the free-frame list.

–  If no free frame, page replacement.
•  Issue a read from the disk to the free frame:

–  Wait in a queue for the disk until serviced.
–  Wait for the disk seek and latency time.
–  Begin the transfer of the page to the free frame.

•  While waiting, allocate the CPU to other process.
•  Interrupt from the disk (I/O completed).
•  Save the registers and process state for other running process.
•  Determine the interrupt was from the disk.

Handle a Page Fault (more details)
(cont’d)

•  …
•  Correct the page table and other tables to show the desired page is

now in memory.
•  Wake up the original waiting process.
•  Wait for the CPU to be allocated to this process again.
•  Restore the user registers and process state and new page table.
•  Resume the interrupted instruction.

6

Performance of Demand Paging
•  To service a page fault is very time-consuming:

–  Service the page-fault interrupt.
–  Read in the page.
–  Restart the process.

•  Effective access time for a demand-paged system:

•  One example: memory access 100 nanosecond
 page fault 25 millisecond

•  How to achieve low page fault rate??

Effective Access Time = (1-p) * ma + p * page fault time

Effective Access Time = 100 + 24,999,900 * p

If p=1/1000, EAT = 25 microsecond (slow down a factor of 250)
If requiring only 10% slow down, p<4/10,000,000 (one out of 2.5 million)

Page Replacement(1)

•  In demand paging, when increasing multiprogramming
level, it is possible to run out of all free frames.

•  How about if a page fault occurs when no free frame is
available?

–  Stop the process.
–  Swap out another process to free some frames.
–  Page replacement:

•  Replacing in page level.

7

Page Replacement(2)
•  If no frame is free, find one frame that is not currently

being used and free it.
–  Write the page into swap space and change page-

table to indicate that this page is no longer in
memory.

–  Use the freed frame to hold the page for which the
process faulted.

•  Use a page-replacement algorithm to select a victim
frame.

•  In this case, two disk accesses are required (one write
one read).

Page Replacement

8

Page Replacement(3)

•  Use a modify bit (dirty bit) to reduce overhead:
–  Each frame has a modify bit associated in hardware.
–  Any write in page will set this bit by hardware.
–  In page replacement, if the bit is not set, no need to write back

to disk.
•  For read-only pages, always no need to write back.
•  With page replacement, we can run a large program in a small

memory.

•  Two important issues:
–  Page-replacement algorithm: how to select the frame to be

replaced?
–  Frame-allocation algorithm: how many frames to allocate to

each process?

Thrashing
•  Thrashing: a process is spending a significant time in paging.
•  Thrashing results in severe performance problem. The process is

spending more time in paging than executing.
•  Cause of thrashing:

–  The process is not allocated enough frames to hold all the
pages currently in active use.

9

Other Considerations in demand-paging

·  Page size: in powers of 2 (2**12 – 2*22)
–  Small page size ! large page-table.
–  Small page size ! less internal fragmentation.
–  Small page size ! more I/O overhead in paging.
–  Small page size ! more page-faults.
–  Small page size ! less I/O amount (better

resolution) and less total allocated memory.
–  A historical trend is toward larger page sizes.

Other Considerations in demand-paging

•  Program structure: a careful selection of data structure and
programming structure

–  To increase locality and hence lower the page-fault rate.
–  To reduce total number of memory access.
–  To reduce total number of pages touched.

•  Also compiler and loader can improve.
•  Example: Array A[1024][1024] of integer

–  Each row is stored in one page
–  Program 1 for j = 1 to 1024 do
 for i = 1 to 1024 do
 A[i][j] = 0;
1024 x 1024 page faults

–  Program 2 for i = 1 to 1024 do
 for j = 1 to 1024 do
 A[i][j] = 0;
1024 page faults

