EECS 3221.3
Operating System Fundamentals

No. 10

Virtual Memory

Prof. Hui Jiang

Department of Electrical Engineering and Computer
Science, York University

Background

* Memory-management methods normally requires the entire process
to be in memory before the process can execute.

+ Better not to load the whole process in memory for execution:
— Programs often have code to handle unusual error conditions.

— Arrays, lists, and tables are often allocated more memory than
they actually need.

— Certain options and features of a program may be used rarely.

— Even all codes are needed, they may not all be needed at the
same time.

* Our goal: partially load a process.
— No longer be constrained by the amount of physical memory.

— Each process takes less memory - CPU utilization and
throughput up.

— Less I/O to load program - run faster.

Logical Memory Space (review)

Max

stack

heap

data

code

Virtual Memory: concept

Physical
Memory
(128M)

™~

AN

Logical Memory (>1G) Disk (>20G)

Demand Paging(1)

* Demand paging:
— A paging system with a lazy page swapper.

— A lazy swapper: never swap a page into memory unless the page
will be used.

* In demand paging:
— When a process is executed,
— The pager guess which pages are needed. (optional)

— The pager brings only these necessary pages into memory.
(optional)

— When referring a page not in a memory, the pager bring it in as
needed and possibly replace an old page when no more free
space.

* Hardware support: to distinguish those pages in memory and those
pages in disk.

— Use valid-invalid bit.

An example: Demand Paging
0
o A 1
1 B 2
2l ¢ 3
0l4 | v 4
3 p i s
4 E) 6
F 6 v 7
3

6f G ' 8
71 H 4 i o
sle | v 10
Logical - "
Memory ! 12
7 i 13
page- 14

table

Physical memory Disk

Handle a page fault
page is on
backing store
/—_—\
\\v/
operating
system
reference @
@ trap
load M [i—
restart page table
instruction
free frame
reset page bring in
table missing page
physical
memory

Handle a Page Fault

The interrupt handler program to handle page fault in virtual memory:

» Check an internal table to see if the reference was a valid or invalid
memory access.

« If invalid, terminate the process; If valid, this page is on disk. Need
page it into memory.

* Find a free frame from the free-frame list. (if no free frame, need
replace an old page)

+ Schedule a disk operation to read the desired page into the newly
allocated frame.

* When the disk read is complete, modify the internal table and page
table to set the bit as valid to indicate this page is now in memory.

» Restart the instruction that was interrupted. The process can now
access the page as though it had always been in memory

Handle a Page Fault (more details)

* Trap to the OS
+ Save the user registers and process status.
» Determine the interrupt was a page fault.
+ Determine the location of the page on the disk.
+ Find a free frame from the free-frame list.
— If no free frame, page replacement.
* Issue a read from the disk to the free frame:
— Wait in a queue for the disk until serviced.
— Wait for the disk seek and latency time.
— Begin the transfer of the page to the free frame.
* While waiting, allocate the CPU to other process.
 Interrupt from the disk (I/O completed).
» Save the registers and process state for other running process.
* Determine the interrupt was from the disk.

Handle a Page Fault (more details)
(cont’d)

» Correct the page table and other tables to show the desired page is
now in memory.

* Wake up the original waiting process.

« Wait for the CPU to be allocated to this process again.

» Restore the user registers and process state and new page table.
* Resume the interrupted instruction.

Performance of Demand Paging

» To service a page fault is very time-consuming:
— Service the page-fault interrupt.
— Read in the page.
— Restart the process.
Effective access time for a demand-paged system:

Effective Access Time = (1-p) * ma + p * page fault time

One example: memory access 100 nanosecond
page fault 25 millisecond

Effective Access Time = 100 + 24,999,900 * p |

If p=1/1000, EAT = 25 microsecond (slow down a factor of 250)
If requiring only 10% slow down, p<4/10,000,000 (one out of 2.5 million)

* How to achieve low page fault rate??

Page Replacement(1)

* In demand paging, when increasing multiprogramming
level, it is possible to run out of all free frames.

* How about if a page fault occurs when no free frame is
available?

— Stop the process.
— Swap out another process to free some frames.
— Page replacement:

* Replacing in page level.

Page Replacement(2)
 If no frame is free, find one frame that is not currently
being used and free it.

— Write the page into swap space and change page-
table to indicate that this page is no longer in
memory.

— Use the freed frame to hold the page for which the
process faulted.

* Use a page-replacement algorithm to select a victim
frame.

* In this case, two disk accesses are required (one write
one read).

Page Replacement

frame valid—invalid bit

N
R ——

swap out
change victim

0 i to invalid %—VD
(:) f| victim 9
reset page \
table for
page table new page <:>swap E:::::::::{:]
desired

page in

physical
memory

Page Replacement(3)

» Use a modify bit (dirty bit) to reduce overhead:
— Each frame has a modify bit associated in hardware.
— Any write in page will set this bit by hardware.
— In page replacement, if the bit is not set, no need to write back
to disk.
* For read-only pages, always no need to write back.
+ With page replacement, we can run a large program in a small
memory.

+ Two important issues:
— Page-replacement algorithm: how to select the frame to be
replaced?
— Frame-allocation algorithm: how many frames to allocate to
each process?

Thrashing

» Thrashing: a process is spending a significant time in paging.

» Thrashing results in severe performance problem. The process is
spending more time in paging than executing.

» Cause of thrashing:

— The process is not allocated enough frames to hold all the
pages currently in active use.

thrashing

CPU utilization

degree of multiprogramming

Other Considerations in demand-paging

- Page size: in powers of 2 (2**12 — 2*22)
— Small page size 2> large page-table.
— Small page size -2 less internal fragmentation.
— Small page size > more I/O overhead in paging.
— Small page size 2> more page-faults.

— Small page size 2> less I/0 amount (better
resolution) and less total allocated memory.

— A historical trend is toward larger page sizes.

Other Considerations in demand-paging

* Program structure: a careful selection of data structure and
programming structure

— To increase locality and hence lower the page-fault rate.
— To reduce total number of memory access.
— To reduce total number of pages touched.
* Also compiler and loader can improve.
* Example: Array A[1024][1024] of integer
— Each row is stored in one page

— Program 1 for 7 = 1 to 1024 do
for 1 = 1 to 1024 do
A[i][F] = O;
1024 x 1024 page faults
— Program 2 for 1 = 1 to 1024 do
for 7 =1 to 1024 do
A[i][j] = 0;

1024 page faults

