
1 

EECS 3221 
Operating System Fundamentals 
 

 

Prof. Hui Jiang 
Dept of Electrical Engineering and Computer 

Science, York University 

No.4 
 

                 CPU scheduling 

CPU Scheduling 
•  CPU scheduling is the basis of multiprogramming 
•  CPU scheduling consists of two components: 

–  CPU scheduler: when CPU becomes idle, the CPU scheduler 
must select from among the processes in ready queue. 

–  Dispatcher: the module which gives control of CPU to the 
process selected by the CPU scheduler. 
•  Switching context 
•  Switching to user mode 
•  Jumping to the proper location in user program to restart 

–  Dispatch latency: the time it takes for the dispatcher to stop one 
process and start another running 
•  Dispatcher should be as fast as possible  

CPU burst vs. I/O burst 

•  Process (thread) execution  
       =  CPU burst + I/O burst 

•  Process (thread) 
alternates between these 
two states. 

•  Length of these bursts is 
very different. 

     

Histogram of CPU-burst Times 

Non-preemptive vs. Preemptive 
scheduling 

•  CPU scheduling decisions may take place when a process: 
1. Switches from running to waiting state. 
2. Switches from running to ready state. 
3. Switches from waiting to ready. 
4. Terminates. 

•  Non-preemptive scheduling takes place under 1 and 4. 
–  Once the CPU has been allocated to a process, the process 

keeps the CPU until it releases CPU. 
•  Preemptive scheduling takes place in 1,2,3,4. 

–  A running process can be preempted by another process 
–  Not easy to make OS kernel to support preemptive scheduling  
–  How about if the preempted process is updating some critical 

data structure? 
•  Disable interrupt / Safety points 
•  Process synchronization 

Scheduling Criteria 

•  CPU utilization – keep the CPU as busy as possible. 
–  Usage percentage (40% -- 90%) 

•  Throughput – # of processes that complete their execution per 
time unit. 

•  Turnaround time – amount of time to execute a particular 
process. 
–  The interval from the time of submission a process to the 

time of completion. 
•  Waiting time – amount of time a process has been waiting in the 

ready queue. 
•  Response time – amount of time it takes from when a request 

was submitted until the first response is produced, not the final 
output  (for time-sharing environment). 



2 

Scheduling Algorithms 

•  First-come, first-served (FCFS) scheduling 

•  Shortest-Job-First (SJF) Scheduling 

•  Priority Scheduling 

•  Round-Robin (RR) scheduling 

•  Multi-level Queue Scheduling 

•  Multilevel Feedback Queue Scheduling  

First-Come, First-Served (FCFS) 
Scheduling 

  Process  Burst Time   
  P1  24 
   P2  3 
   P3   3  

•  Suppose that the processes arrive at time 0 in the order: P1 , P2 , P3   
The Gantt Chart for the scheduling is: 
 
 
 
 
 

•  Waiting time for P1  = 0; P2  = 24; P3 = 27. 
•  Average waiting time:  (0 + 24 + 27)/3 = 17. 

P1 P2 P3

24 27 300

FCFS Scheduling (Cont.) 
Suppose that the processes arrive in the order: 

   P2 , P3 , P1 . 
•  The Gantt chart for the schedule is: 

 

•  Waiting time for P1 = 6; P2 = 0; P3 = 3. 
•  Average waiting time:   (6 + 0 + 3)/3 = 3. 
•  FCFS is easy to implement (as a FIFO sequence). 
•  FCFS results in long wait in most cases and suffers convoy effect. 

–  Convoy effect : all the other processes wait for one big process 
to get off the CPU. 

P1P3P2

63 300

Shortest-Job-First (SJF) Scheduling 
•  Associate with each process the length of its next CPU burst. 

Schedule CPU to process with the shortest time. 
–  The shortest one is the first. 

•  Implementation: ready queue ! sorted list. 
•  Two schemes:  

–  Non-preemptive – once CPU given to the process it cannot 
be preempted until it completes its CPU burst. 

–  Preemptive – if a new process arrives with CPU burst length 
less than remaining time of current executing process, it 
preempts.  This scheme is know as the Shortest-Remaining-
Time-First (SRTF). 

•  SJF is optimal – gives minimum average waiting time for a given 
set of processes. 

  Process  Arrival Time  Burst Time 
  P1  0.0  7 
   P2  2.0  4 
   P3  4.0  1 
   P4  5.0  4 

•  SJF (non-preemptive) 

·  Average waiting time = (0 + 6 + 3 + 7)/4 = 4 

Example of Non-Preemptive SJF 

P1 P3 P2

73 160

P4

8 12

Example of Preemptive SJF 
(shortest-remaining-time-first) 

  Process  Arrival Time  Burst Time 
  P1  0.0  7 
   P2  2.0  4 
   P3  4.0  1 
   P4  5.0  4 

•  SJF (preemptive) 

•  Average waiting time = (9 + 1 + 0 +2)/4 = 3 

P1 P3P2

42 110

P4

5 7

P2 P1

16



3 

Determining Length  
of Next CPU Burst 

•  Length of next CPU burst is unknown. 
•  Can only estimate the length. 
•  Can be done by using the length of previous CPU 

bursts, using exponential averaging, to predict 
the next one. 

 
 

:Define  4.
10 ,  3.

burst CPU next the for value predicted   2.
burst CPU of lenght actual  1.

≤≤
=

=

+

αα
τ 1n

th
n nt

( ) .1 1 nnn t ταατ −+=+

Examples of Exponential Averaging 
•  α=0 

–  τn+1 = τn = … = τ0 

–  Recent history does not count. 
•   α=1 

–   τn+1 = tn 

–  Only the actual last CPU burst counts. 
•  If we expand the formula, we get: 

τn+1 =  α tn+(1 – α) tn-1 + … 
            +(1 - α )j  tn-j + … 
            +(1 - α )n-1 t0 

•  Since both α and (1 - α) are less than or equal to 1, each 
successive term has less weight than its predecessor. 

Prediction of the Length of the 
Next CPU Burst 

Priority Scheduling 

•  A priority number (integer) is associated with each process 
•  The CPU is allocated to the process with the highest priority 

(smallest integer " highest priority). 
–  Preemptive 
–  Nonpreemptive 

•  SJF is a priority scheduling where priority is the predicted 
next CPU burst time. 

•  Problem " Starvation – low priority processes may never 
execute. 

•  Solution " Aging – as time progresses increase the priority 
of the process. 

Round Robin (RR) 

•  Each process gets a small slice of CPU time (time quantum), 
usually 10-100 milliseconds.  After this time has elapsed, the 
process is preempted and added to the end of the ready queue. 
–  Ready queue is a circular queue or FIFO queue. 

•  Fairness: If there are n processes in the ready queue and the time 
quantum is q, then each process gets 1/n of the CPU time in 
chunks of at most q time units at once.  No process waits more 
than (n-1)q time units.   

•  Performance: 
–  q large " FCFS 
–  q small " too many context switches, so overhead is high. 
–  q must be large with respect to most CPU bursts’ lengths. 

Time Quantum and Context 
Switch Time 



4 

Example of RR with Time 
Quantum = 20 

  Process  Burst Time 
  P1  53 
   P2   17 
   P3  68 
   P4   24 

•  The Gantt chart is:  
 
 
 
 
 
 

•  Typically, higher average waiting time than SJF, but 
better response. 

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

Turnaround Time Varies With The 
Time Quantum 

Multilevel Queue 

•  Ready queue is partitioned into separate queues: 
–  foreground (interactive) 
–  background (batch) 

•  Any process is permanently assigned to one of these queues 
•  Each queue has its own scheduling algorithm, i.e., 

–  foreground – RR 
–  background – FCFS 

•  Scheduling must be done between the queues. 
–  Fixed priority scheduling; (i.e., serve all from foreground then 

from background).  Possibility of starvation. 
–  Time slice – each queue gets a certain amount of CPU time 

which it can schedule amongst its processes; i.e.,  
•  80% to foreground in RR 
•  20% to background in FCFS  

One example of  
multilevel Queue Scheduling 

Multilevel Feedback Queue 
•  A process can move between the various queues; aging can be 

implemented this way. 
–  If used too much CPU time ! lower-priority queue 
–  If waited too long  ! higher-priority queue 

•  Multilevel-feedback-queue scheduler defined by the following 
parameters: 
–  number of queues 
–  scheduling algorithms for each queue 
–  method to determine when to upgrade a process 
–  method to determine when to demote a process 
–  method to determine which queue a process will enter when 

that process needs service 
•  It is the most general CPU scheduling algorithm. Can be 

configured to match a specific system under design. 

Example of Multilevel Feedback Queue 
•  Three queues:  

–  Q0 – time quantum 8 
milliseconds 

–  Q1 – time quantum 16 
milliseconds 

–  Q2 – FCFS 
•  Scheduling 

–  A new job enters queue Q0. 
When it gains CPU, job 
receives 8 milliseconds.  If it 
does not finish in 8 
milliseconds, job is moved 
to queue Q1. 

–  At Q1 job is again served RR 
and receives 16 additional 
milliseconds.  If it still does 
not complete, it is 
preempted and moved to 
queue Q2. 

–  Always preemptive. 


