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 Process Synchronization(2) 

Semaphores 
•  Problems with the software solutions. 

–  Complicated programming, not flexible to use. 
–  Not easy to generalize to more complex synchronization 

problems. 

•  Semaphore (a.k.a. lock): an easy-to-use synchronization tool 
–  An integer variable S 
–  wait(S)    { 
      while (S<=0) ;     
      S-- ; 
    } 
–  signal(S)   { 
     S++ ; 
 } 
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Semaphore usage (1): 
the n-process critical-section problem 

•  The n processes share a semaphore,  
  Semaphore mutex ;       // mutex is initialized to 1. 

do { 

        wait(mutex); 

           critical section of Pi

        signal(mutex);
 
           remainder section of Pi 

} while (1);
          

Process Pi 

Semaphore usage (2): 
as a General Synchronization Tool 

•  Execute B in Pj only after A executed in Pi 
•  Use semaphore flag initialized to 0 

 
… 
A 
signal (flag) ; 
… 
 

 
… 
wait (flag) ; 
B 
… 
 

Pi Pj 
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Spinlock vs. Sleeping Lock 

•  Previous definition of semaphore requires busy waiting. 
–  It is called spinlock. 
–  spinlock does not need context switch, but waste CPU cycles 

in a continuous loop. 
–  spinlock is OK only for lock waiting is very short. 

•  Semaphore without busy-waiting, called sleeping lock: 
–  In defining wait(), rather than busy-waiting, the process makes 

system calls to block itself and switch to waiting state, and 
put the process to a waiting queue associated with the 
semaphore. The control is transferred to CPU scheduler. 

–  In defining signal(), the process makes system calls to pick a 
process in the waiting queue of the semaphore, wake it up by  
moving it to the ready queue to wait for CPU scheduling. 

–  Sleeping Lock is good only for long waiting. 

Spinlock Implementation(1) 

•  In uni-processor machine, disabling interrupt before modifying 
semaphore.  

signal(S) { 
 
   Disable_Interrupt ; 
   S++ ; 
   Enable_Interrupt ; 
   return ; 
 
} 

wait(S) { 
 
  do { 
      Disable_Interrupt; 
      if(S>0) {  
          S-- ; 
         Enable_Interrupt ; 
         return ; 
       } 
      Enable_Interrupt ; 
   }  while(1) ; 
} 
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Spinlock Implementation(1) 

•  In uni-processor machine, disabling interrupt before modifying 
semaphore.  

signal(S) { 
 
   Disable_Interrupt ; 
   S++ ; 
   Enable_Interrupt ; 
   return ; 
 
} 

wait(S) { 
 
  do { 
      Disable_Interrupt; 
      if(S>0) {  
          S-- ; 
         Enable_Interrupt ; 
         return ; 
       } 
      Enable_Interrupt ; 
   }  while(1) ; 
} 

Spinlock Implementation(2) 
•  In multi-processor machine, inhibiting interrupt of all 

processors is neither easy nor efficient. 
•  Use software solution to critical-section problems 

–  e.g., bakery algorithm. 
–  Treat wait() and signal() as critical sections. 

•  Or use hardware support if available: 
–  TestAndSet() or Swap() 

•  Example: implement spinlock between N processes. 
–  Use Bakery algorithm for protection. 
–  Shared data: 

Semaphore S ;  Initially S=1 
 

      boolean choosing[N];  (Initially false) 
      int number[N];     (Initially  0 ) 
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Spinlock Implementation(3) 
wait(S) { 
     int i=process_ID();  
 
      choosing[ i ] = true; 

 number[ i ] = max(number[0], number[1], 
…, number [N – 1])+1; 
 choosing[ i ] = false; 
 for (j = 0; j < N; j++) { 
  while (choosing[ j ]) ;  
  while ((number[ j ] != 0) &&  

                    (number[ j ],j)< (number[ i ],i)) ; 
 } 

    if (S >0) {  //critical section 
        S--; 
       number[i] = 0; 
       return ; 
     } 
    number[i] = 0;  
  } while (1); 
} 

signal(S) { 
     int i=process_ID();  
 
   choosing[ i ] = true; 
   number[ i ] = max(number[0], number[1], 

…, number [N – 1])+1; 
   choosing[ i ] = false; 
   for (j = 0; j < N; j++) { 

  while (choosing[ j ]) ;  
  while ((number[ j ] != 0) &&  

                    (number[ j ],j)< (number[ i ],i)) ; 
 }    

 
     S++; //critical section 
      
    number[i] = 0; 
     
    return ; 
} 

Sleeping Lock (I) 

•  Define a sleeping lock as a structure: 
  typedef struct { 
     int value;   // Initialized to 1 

         struct process *L; 
 } semaphore; 

 
 
•  Assume two system calls: 

–  block() suspends the process that invokes it. 
–  wakeup(P) resumes the execution of a blocked process P. 

•  Equally applicable to multiple threads in one process. 
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Sleeping Lock (II) 
•  Semaphore operations now defined as:  

  wait(S):   
  S.value--; 

   if (S.value < 0) {  
      add this process to S.L; 

     block(); 
   } 
 
  signal(S):  

  S.value++; 
   if (S.value <= 0) { 
      remove a process P from S.L; 

     wakeup(P); 
   } 

Two Types of Semaphores: 
Binary vs. Counting 

 •  Binary semaphore (a.k.a. mutex lock) – integer value 
can range only between 0 and 1;  simpler to implement 
by hardware. 

•  Counting semaphore – integer value can range over an 
unrestricted domain. 

•  We can implement a counting semaphore S by using 
two binary semaphore. 

•  Binary semaphore is normally used as mutex lock. 

•  Counting semaphore can be used as shared counter, 
load controller, etc… 
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Classical Synchronization Problems 

•  The Bounded-Buffer P-C Problem 

•  The Readers-Writers Problem 

•  The Dining-Philosophers Problem 

Bounded-Buffer P-C Problem 

•  A producer produces some data for a consumer to 
consume. They share a bounded-buffer for data 
transferring. 

•  Shared memory: 
        A buffer to hold at most n items 
•  Shared data (three semaphores) 
 

Semaphore filled, empty;  /*counting*/ 
    Semaphore mutex;           /* binary */ 
        

Initially: 
 
filled = 0, empty = n, mutex = 1 
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Bounded-Buffer Problem: 
Producer Process 

do {  
         … 
 produce an item in nextp 
         … 
 wait(empty); 
 wait(mutex); 
         … 
 add nextp to buffer 
        … 
 signal(mutex); 
 signal(filled); 

 
} while (1); 

Bounded-Buffer Problem: 
Consumer Process 

 
   

do {  
 wait(filled) 
 wait(mutex); 
    … 
 remove an item from buffer to nextc 
    … 
 signal(mutex); 
 signal(empty); 
    … 
 consume the item in nextc 
    … 

} while (1); 
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The Readers-Writers Problem 
•  Many processes concurrently access a data object 

–  Readers: only read the data. 
–  Writers: update and may write the data object. 

•  Only writer needs exclusive access of the data. 

•  The first readers-writers problem: 
–  Unless a writer has already obtained permission to use the 

shared data, readers are always allowed to access data. 
–  May starve a writer. 

•  The second readers-writer problem: 
–  Once a writer is ready, the writer performs its write as soon 

as possible. 
–  May starve a reader. 

The 1st Readers-Writers Problem 
•  Use semaphore to implement 1st readers-writer problem 

•  Shared data: 

     int readcount = 0 ;   // keep track the number of readers        
                                     //  accessing the data object 
 
     Semaphore mutex = 1 ;  // mutually exclusive access to       

         // readcount among readers  
 
    Semaphore wrt = 1 ;    // mutual exclusion to the data object 

     // used by every writer 
      //also set by the 1st reader to read the data  
     // and clear by the last reader to finish reading 
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The 1st Readers-Writers Problem 

  …
wait(wrt);
  …
writing is performed
  …
signal(wrt);
 … 

Writer Process 
…
wait(mutex);
readcount++;
if (readcount == 1)   wait(wrt);
signal(mutex);
   …
reading is performed
…
wait(mutex);
readcount--;
if (readcount == 0)   signal(wrt);
signal(mutex);
… 

Reader Process 

The Dining-Philosophers Problem 

•  Five philosophers are 
thinking or eating 

•  Using only five 
chopsticks 

•  When thinking, no need 
for chopsticks. 

•  When eating, need two 
closest chopsticks. 

•  Can pick up only one 
chopsticks 

•  Can not get the one 
already in the hand of a 
neighbor. 
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The Dining-Philosophers Problem: 
Semaphore Solution 

•  Represent each chopstick with a semaphore 
     Semaphore  chopstick[5];  // Initialized to 1 

do {
    wait(chopstick[i]) ;
    wait(chopstick[(i+1) % 5]) ;
      …
      eat
      …
    signal(chopstick[i]);
    signal(chopstick[(i+1) % 5]);
      …
      think
      …
} while (1); 

Philosopher i 
(i=0,1,2,3,4) 

Incorrect Semaphore Usage 

Mistake 1: 
 
… 
signal(mutex) ; 
… 
Critical 
Section 
… 
wait(mutex) ; 

Mistake 2: 
 
… 
wait(mutex) ; 
… 
Critical 
Section 
… 
wait(mutex) ; 

Mistake 3: 
 
… 
wait(mutex) ; 
… 
Critical 
Section 
… 
 

Mistake 4: 
 
… 
Critical 
Section 
… 
signal(mutex) ; 
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Starvation and Deadlock 

•  Starvation  – infinite blocking.  A process may never be 
removed from the semaphore queue in which it is 
suspended. 

•  Deadlock – two or more processes are waiting infinitely for 
an event that can be caused by only one of the waiting 
processes. 

•  Let S and Q be two semaphores initialized to 1 
  P0  P1 
  wait(S);  wait(Q); 
  wait(Q);  wait(S); 
   !   ! 
  signal(S);  signal(Q); 
  signal(Q)  signal(S); 

double_rq_lock()  
in Linux Kernel 

double_rq_lock(struct runqueue *rq1, 
struct runqueue *rq2)   

{ 
   if (rq1 == rq2)  
      spinlock(&rq1->lock); 
   else { 
         if (rq1 < rq2) { 
           spin_lock(&rq1->lock); 
           spin_lock(&rq2->lock); 
         } else { 
           spin_lock(&rq2->lock); 
           spin_lock(&rq1->lock); 
          } 
    } 
} 
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Why not? 
double_rq_lock(struct runqueue *rq1, 

struct runqueue *rq2)   
{ 
    spin_lock(&rq1->lock); 
    spin_lock(&rq2->lock); 
} 

struct runqueue *RdQ, *DevQ1, *DevQ2, …   

P1 
… 
double_rq_lock(RdQ,DevQ1); 
…   

P2 
… 
double_rq_lock(DevQ1,RdQ); 
…   

double_rq_unlock()  
in Linux Kernel 

double_rq_unlock(struct runqueue *rq1, 
struct runqueue *rq2)   

{ 
   spin_unlock(&rq1->lock); 

     if (rq1 != rq2) 

          spin_unlock(&rq2->lock); 
} 
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Pthread Semaphore 
•  Pthread semaphores for multi-threaded 

programming in Unix/Linux: 

–  Pthread Mutex Lock 
     (binary semaphore) 

–  Pthread Semaphore  
    (general counting semaphore) 

Pthread Mutex Lock 
#include <pthread.h> 

/*declare a mutex variable*/ 

pthread_mutex_t  mutex ; 

 

/* create a mutex lock */ 

pthread_mutex_init (&mutex, NULL) ; 

 

/* acquire the mutex lock  */ 

pthread_mutex_lock(&mutex) ; 

 

/* release the mutex lock  */ 

pthread_mutex_unlock(&mutex) ; 
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Using Pthread Mutex Locks 
•  Use mutex locks to solve critical section problems: 
 
#include <pthread.h> 

pthread_mutex_t  mutex ; 
… 

pthread_mutex_init(&mutex, NULL) ; 
… 
pthread_mutex_lock(&mutex) ; 
 
/*** critical section ***/ 
 
pthread_mutex_unlock(&mutex) ; 

Pthread Semaphores 
#include <semaphore.h> 

/*declare a pthread semaphore*/ 

sem_t sem ; 

 

/* create and initialize a semaphore */ 

sem_init (&sem, flag, initial_value) ; 

 

/* wait() operation  */ 

sem_wait(&sem) ;  

 

/* signal() operation  */ 

sem_post(&sem) ; 
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Using Pthread semaphore 
•  Using Pthread semaphores for counters shared by multiple threads: 
 

#include <semaphore.h> 

sem_t  counter ; 

… 

sem_init(&counter, 0, 0) ;  /* initially 0 */ 

… 

sem_post(&counter) ;    /* increment */ 

… 

sem_wait(&counter) ;    /* decrement */ 

volatile in multithread program 

·  In multithread programming, a shared global variable 
must be declared as volatile to avoid compiler’s 
optimization which may cause conflicts: 

volatile int data ; 

 

volatile char buffer[100] ;  
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nanosleep() 

#include <time.h>  
 
int nanosleep(const struct timespec *req,  

      struct timespec *rem); 
 
struct timespec  
{  
 time_t tv_sec; /* seconds */  
 long tv_nsec; /* nanoseconds 0-999,999,999 */  
}; 
   


