
1

EECS 3221.3
Operating System Fundamentals

Prof. Hui Jiang
Dept of Electrical Engineering and Computer

Science, York University

No.6

 Process Synchronization(2)

Semaphores
•  Problems with the software solutions.

–  Complicated programming, not flexible to use.
–  Not easy to generalize to more complex synchronization

problems.

•  Semaphore (a.k.a. lock): an easy-to-use synchronization tool
–  An integer variable S
–  wait(S) {
 while (S<=0) ;
 S-- ;
 }
–  signal(S) {
 S++ ;
 }

2

Semaphore usage (1):
the n-process critical-section problem

•  The n processes share a semaphore,
 Semaphore mutex ; // mutex is initialized to 1.

do { 

 wait(mutex); 

 critical section of Pi

 signal(mutex);
 
 remainder section of Pi

} while (1);

Process Pi

Semaphore usage (2):
as a General Synchronization Tool

•  Execute B in Pj only after A executed in Pi
•  Use semaphore flag initialized to 0

…
A
signal (flag) ;
…

…
wait (flag) ;
B
…

Pi Pj

3

Spinlock vs. Sleeping Lock

•  Previous definition of semaphore requires busy waiting.
–  It is called spinlock.
–  spinlock does not need context switch, but waste CPU cycles

in a continuous loop.
–  spinlock is OK only for lock waiting is very short.

•  Semaphore without busy-waiting, called sleeping lock:
–  In defining wait(), rather than busy-waiting, the process makes

system calls to block itself and switch to waiting state, and
put the process to a waiting queue associated with the
semaphore. The control is transferred to CPU scheduler.

–  In defining signal(), the process makes system calls to pick a
process in the waiting queue of the semaphore, wake it up by
moving it to the ready queue to wait for CPU scheduling.

–  Sleeping Lock is good only for long waiting.

Spinlock Implementation(1)

•  In uni-processor machine, disabling interrupt before modifying
semaphore.

signal(S) {

 Disable_Interrupt ;
 S++ ;
 Enable_Interrupt ;
 return ;

}

wait(S) {

 do {
 Disable_Interrupt;
 if(S>0) {
 S-- ;
 Enable_Interrupt ;
 return ;
 }
 Enable_Interrupt ;
 } while(1) ;
}

4

Spinlock Implementation(1)

•  In uni-processor machine, disabling interrupt before modifying
semaphore.

signal(S) {

 Disable_Interrupt ;
 S++ ;
 Enable_Interrupt ;
 return ;

}

wait(S) {

 do {
 Disable_Interrupt;
 if(S>0) {
 S-- ;
 Enable_Interrupt ;
 return ;
 }
 Enable_Interrupt ;
 } while(1) ;
}

Spinlock Implementation(2)
•  In multi-processor machine, inhibiting interrupt of all

processors is neither easy nor efficient.
•  Use software solution to critical-section problems

–  e.g., bakery algorithm.
–  Treat wait() and signal() as critical sections.

•  Or use hardware support if available:
–  TestAndSet() or Swap()

•  Example: implement spinlock between N processes.
–  Use Bakery algorithm for protection.
–  Shared data:

Semaphore S ; Initially S=1

 boolean choosing[N]; (Initially false)
 int number[N]; (Initially 0)

5

Spinlock Implementation(3)
wait(S) {
 int i=process_ID();

 choosing[i] = true;

 number[i] = max(number[0], number[1],
…, number [N – 1])+1;
 choosing[i] = false;
 for (j = 0; j < N; j++) {
 while (choosing[j]) ;
 while ((number[j] != 0) &&

 (number[j],j)< (number[i],i)) ;
 }

 if (S >0) { //critical section
 S--;
 number[i] = 0;
 return ;
 }
 number[i] = 0;
 } while (1);
}

signal(S) {
 int i=process_ID();

 choosing[i] = true;
 number[i] = max(number[0], number[1],

…, number [N – 1])+1;
 choosing[i] = false;
 for (j = 0; j < N; j++) {

 while (choosing[j]) ;
 while ((number[j] != 0) &&

 (number[j],j)< (number[i],i)) ;
 }

 S++; //critical section

 number[i] = 0;

 return ;
}

Sleeping Lock (I)

•  Define a sleeping lock as a structure:
 typedef struct {
 int value; // Initialized to 1

 struct process *L;
 } semaphore;

•  Assume two system calls:

–  block() suspends the process that invokes it.
–  wakeup(P) resumes the execution of a blocked process P.

•  Equally applicable to multiple threads in one process.

6

Sleeping Lock (II)
•  Semaphore operations now defined as:

 wait(S):
 S.value--;

 if (S.value < 0) {
 add this process to S.L;

 block();
 }

 signal(S):

 S.value++;
 if (S.value <= 0) {
 remove a process P from S.L;

 wakeup(P);
 }

Two Types of Semaphores:
Binary vs. Counting

 •  Binary semaphore (a.k.a. mutex lock) – integer value
can range only between 0 and 1; simpler to implement
by hardware.

•  Counting semaphore – integer value can range over an
unrestricted domain.

•  We can implement a counting semaphore S by using
two binary semaphore.

•  Binary semaphore is normally used as mutex lock.

•  Counting semaphore can be used as shared counter,
load controller, etc…

7

Classical Synchronization Problems

•  The Bounded-Buffer P-C Problem

•  The Readers-Writers Problem

•  The Dining-Philosophers Problem

Bounded-Buffer P-C Problem

•  A producer produces some data for a consumer to
consume. They share a bounded-buffer for data
transferring.

•  Shared memory:
 A buffer to hold at most n items
•  Shared data (three semaphores)

Semaphore filled, empty; /*counting*/
 Semaphore mutex; /* binary */

Initially:

filled = 0, empty = n, mutex = 1

8

Bounded-Buffer Problem:
Producer Process

do {
 …
 produce an item in nextp
 …
 wait(empty);
 wait(mutex);
 …
 add nextp to buffer
 …
 signal(mutex);
 signal(filled);

} while (1);

Bounded-Buffer Problem:
Consumer Process

do {
 wait(filled)
 wait(mutex);
 …
 remove an item from buffer to nextc
 …
 signal(mutex);
 signal(empty);
 …
 consume the item in nextc
 …

} while (1);

9

The Readers-Writers Problem
•  Many processes concurrently access a data object

–  Readers: only read the data.
–  Writers: update and may write the data object.

•  Only writer needs exclusive access of the data.

•  The first readers-writers problem:
–  Unless a writer has already obtained permission to use the

shared data, readers are always allowed to access data.
–  May starve a writer.

•  The second readers-writer problem:
–  Once a writer is ready, the writer performs its write as soon

as possible.
–  May starve a reader.

The 1st Readers-Writers Problem
•  Use semaphore to implement 1st readers-writer problem

•  Shared data:

 int readcount = 0 ; // keep track the number of readers
 // accessing the data object

 Semaphore mutex = 1 ; // mutually exclusive access to

 // readcount among readers

 Semaphore wrt = 1 ; // mutual exclusion to the data object

 // used by every writer
 //also set by the 1st reader to read the data
 // and clear by the last reader to finish reading

10

The 1st Readers-Writers Problem

 …
wait(wrt);
 …
writing is performed
 …
signal(wrt);
 …

Writer Process
…
wait(mutex);
readcount++;
if (readcount == 1) wait(wrt);
signal(mutex);
 …
reading is performed
…
wait(mutex);
readcount--;
if (readcount == 0) signal(wrt);
signal(mutex);
…

Reader Process

The Dining-Philosophers Problem

•  Five philosophers are
thinking or eating

•  Using only five
chopsticks

•  When thinking, no need
for chopsticks.

•  When eating, need two
closest chopsticks.

•  Can pick up only one
chopsticks

•  Can not get the one
already in the hand of a
neighbor.

11

The Dining-Philosophers Problem:
Semaphore Solution

•  Represent each chopstick with a semaphore
 Semaphore chopstick[5]; // Initialized to 1

do {
 wait(chopstick[i]) ;
 wait(chopstick[(i+1) % 5]) ;
 …
 eat
 …
 signal(chopstick[i]);
 signal(chopstick[(i+1) % 5]);
 …
 think
 …
} while (1);

Philosopher i
(i=0,1,2,3,4)

Incorrect Semaphore Usage

Mistake 1:

…
signal(mutex) ;
…
Critical
Section
…
wait(mutex) ;

Mistake 2:

…
wait(mutex) ;
…
Critical
Section
…
wait(mutex) ;

Mistake 3:

…
wait(mutex) ;
…
Critical
Section
…

Mistake 4:

…
Critical
Section
…
signal(mutex) ;

12

Starvation and Deadlock

•  Starvation – infinite blocking. A process may never be
removed from the semaphore queue in which it is
suspended.

•  Deadlock – two or more processes are waiting infinitely for
an event that can be caused by only one of the waiting
processes.

•  Let S and Q be two semaphores initialized to 1
 P0 P1
 wait(S); wait(Q);
 wait(Q); wait(S);
 ! !
 signal(S); signal(Q);
 signal(Q) signal(S);

double_rq_lock()
in Linux Kernel

double_rq_lock(struct runqueue *rq1,
struct runqueue *rq2)

{
 if (rq1 == rq2)
 spinlock(&rq1->lock);
 else {
 if (rq1 < rq2) {
 spin_lock(&rq1->lock);
 spin_lock(&rq2->lock);
 } else {
 spin_lock(&rq2->lock);
 spin_lock(&rq1->lock);
 }
 }
}

13

Why not?
double_rq_lock(struct runqueue *rq1,

struct runqueue *rq2)
{
 spin_lock(&rq1->lock);
 spin_lock(&rq2->lock);
}

struct runqueue *RdQ, *DevQ1, *DevQ2, …

P1
…
double_rq_lock(RdQ,DevQ1);
…

P2
…
double_rq_lock(DevQ1,RdQ);
…

double_rq_unlock()
in Linux Kernel

double_rq_unlock(struct runqueue *rq1,
struct runqueue *rq2)

{
 spin_unlock(&rq1->lock);

 if (rq1 != rq2)

 spin_unlock(&rq2->lock);
}

14

Pthread Semaphore
•  Pthread semaphores for multi-threaded

programming in Unix/Linux:

–  Pthread Mutex Lock
 (binary semaphore)

–  Pthread Semaphore
 (general counting semaphore)

Pthread Mutex Lock
#include <pthread.h>

/*declare a mutex variable*/

pthread_mutex_t mutex ;

/* create a mutex lock */

pthread_mutex_init (&mutex, NULL) ;

/* acquire the mutex lock */

pthread_mutex_lock(&mutex) ;

/* release the mutex lock */

pthread_mutex_unlock(&mutex) ;

15

Using Pthread Mutex Locks
•  Use mutex locks to solve critical section problems:

#include <pthread.h>

pthread_mutex_t mutex ;
…

pthread_mutex_init(&mutex, NULL) ;
…
pthread_mutex_lock(&mutex) ;

/*** critical section ***/

pthread_mutex_unlock(&mutex) ;

Pthread Semaphores
#include <semaphore.h>

/*declare a pthread semaphore*/

sem_t sem ;

/* create and initialize a semaphore */

sem_init (&sem, flag, initial_value) ;

/* wait() operation */

sem_wait(&sem) ;

/* signal() operation */

sem_post(&sem) ;

16

Using Pthread semaphore
•  Using Pthread semaphores for counters shared by multiple threads:

#include <semaphore.h>

sem_t counter ;

…

sem_init(&counter, 0, 0) ; /* initially 0 */

…

sem_post(&counter) ; /* increment */

…

sem_wait(&counter) ; /* decrement */

volatile in multithread program

·  In multithread programming, a shared global variable
must be declared as volatile to avoid compiler’s
optimization which may cause conflicts:

volatile int data ;

volatile char buffer[100] ;

17

nanosleep()

#include <time.h>

int nanosleep(const struct timespec *req,

 struct timespec *rem);

struct timespec
{
 time_t tv_sec; /* seconds */
 long tv_nsec; /* nanoseconds 0-999,999,999 */
};

