
1

EECS 3221
Operating System Fundamentals

Prof. Hui Jiang
Dept of Electrical Engineering and Computer

Science, York University

No.8

 Memory Management (1)

Memory Management
•  A program usually resides on a disc as a binary

executable file.
•  The program can be moved between disk and memory.
•  Program must be brought into memory and placed

within a process for it to be executed.
•  In multiprogramming, we keep several programs in

memory.
•  Memory management strategies:

–  Contiguous Memory Allocation
–  Paging
–  Segmentation
–  Segmentation with paging

•  Memory management needs hardware support – MMU.

CPU vs. memory
•  Physical memory consists of a large array of words or bytes, each with

its own address.
•  In a typical instruction-execution cycle:

–  CPU fetches an instruction from memory according to PC .
–  The instruction is decoded.
–  CPU may fetch operands from memory according to the address in

the instruction. (optional)
–  CPU execute in registers
–  CPU saves results into a memory address (optional)

•  CPU generates address from program counter, program address, etc.
•  CPU sends the address to a memory management unit (MMU), which is

hardware to actually locate the memory at certain location.
–  Memory protection.
–  Memory mapping (address translation).

Program
Generation

&
Address

Re-locatable address:
e.g. 14 bytes from beginning
 of module

Symbolic address:
 e.g., count,i,j,etc

Physical address:
0x14398, 0xFF083

Program
Generation

&
Address

Re-locatable address:
e.g. 14 bytes from beginning
 of module

Symbolic address:
 e.g., count,i,j,etc

Logical address:
e.g. 4014, 1058, etc.

Physical address:
0x14398, 0xFF083

Logical vs. Physical Address
•  Physical address: the address loaded into the memory-

address register to actually address the memory.
•  Logical (virtual) address: an address generated by the

CPU and the address referred by user program; address
used in binary codes.

CPU

MMU

0346:
logical address

logical address

Physical
Memory

physical address
User

Program

Jump 0346

14346

logical address
space

physical address
Space

14398

2

Address binding
•  Address binding: binding the logical memory addresses in

instructions and data to physical memory addresses.
–  In source programs: symbolic addresses (e.g., count, i, j, etc.)
–  A compiler will bind each symbolic address to a relocatable

address (e.g. 14 bytes from the beginning of the module)
–  The linkage editor or loader will bind each relocatable address

to a logical address (e.g., 4014)
–  In run-time, MMU will bind each logical address to a physical

address (e.g., 074014)
–  The final physical address is used to locate memory.

•  Allow a user program to be loaded in any part of the physical
memory ! address binding in run-time

 ! completely separate physical address from logical address

Memory-Management Unit (MMU)
•  MMU: maps logical address to physical address.
•  The user program deals with logical addresses; it never

sees the real physical addresses.
•  A simple MMU scheme, the value in the relocation

register is added to every address generated by a user
process at the time it is sent to memory.

Logical vs. Physical address (2)

•  Separating logical address from physical address:
–  Requires hardware support : MMI does address

mapping dynamically.

•  Why separating logical address from physical address?

–  Easier for compiler

–  More benefits to OS memory management

–  Consider two old methods …

Address Binding: compile-time
•  In compiling, physical address is generated for every

instruction.

•  The compiler has to know where the process will reside
in memory.

•  The code can not change location in memory unless it is
re-compiled.

•  No separation of logical and physical address spaces.

•  Example: .COM format in MS-DOS.
–  Not a choice for a multiprogramming system.

Address Binding: load-time

•  The compiler generate re-locatable code.

•  When OS loading code to memory, physical address is
generated for every instruction in the program.

•  The process can be loaded into different memory
locations.

•  But once loaded, it can not move during execution.

•  Loading a program is slow.

Benefits to separate LA from PA

•  Easier for compiler:
–  Generate binary codes in separate logical spaces.
–  All instructions use LA.

•  Maximum flexibility for OS to manage memory:
–  Program loading is fast, just direct copy.
–  The same binary code can be loaded anywhere in memory.
–  A loaded program can be re-located in memory.

•  Need hardware MMU support.

3

Memory Management Approaches

•  Contiguous Memory Allocation

•  Paging

•  Segmentation

•  Segmentation with paging

Contiguous Memory Allocation

•  Every process is allocated to a single contiguous section of physical
memory.

OS

process 1

process 2

process 3

OS

process 1

process 3

OS

process 1

process 3

OS

process 1

process 4

process 3

process 4

process 5

Memory Management Unit (MMU)
•  Two registers:

–  Limit register: the range of logical address
–  Relocation register: starting position of physical memory

•  In context switch, the dispatcher load both registers with correct
values.

•  Every memory access is checked by MMU hardware as:

MMU

Free Memory Management
•  OS must keep the information on which parts of memory are

available and which are occupied.
–  allocated partitions
–  free partitions (holes)

•  Hole: a block of free memory.
–  holes of various size are scattered throughout memory

•  When a process arrives, it is allocated memory from a hole
large enough to accommodate it.

•  Use linked lists:

Free Memory
start

size

next

start

size

next

start

size

next

start

size

next

start

size

next

start

size

next

Dynamic Storage-Allocation Problem

•  First-fit: Allocate the first hole that is big enough.
•  Best-fit: Allocate the smallest hole that is big enough;

must search entire list, unless ordered by size. Produces
the smallest leftover hole.

•  Worst-fit: Allocate the largest hole; must also search
entire list. Produces the largest leftover hole.

How to satisfy a request of size n from a list of free holes  
that have various size.

1.  First-fit and best-fit are better than worst-fit in terms of speed and
memory utilization.

2.  First-fit is faster than best-fit.

Contiguous Memory Allocation:
External Fragmentation

•  External fragmentation – total memory space exists to satisfy a
request, but it is not contiguous.

•  Contiguous memory allocation suffers serious external
fragmentation; Free memory is quickly broken into little pieces.

–  50-percent rule for first fit (1/3 is wasted).
•  Reduce external fragmentation by compaction:

–  Shuffle memory contents to place all free memory together in
one large block.

–  Compaction is possible only if relocation is dynamic, and is
done at execution time.

–  Compaction is very costly.
•  Reduce external fragmentation by better memory management

methods:
–  Paging.
–  Segmentation.

4

Contiguous Memory Allocation:
Expanding memory

•  How to allocate more memory to an existing process?

–  Move-and-Copy may be needed.

•  It is difficult to share memory among different
processes.

