
1

EECS 3221.3
Operating System Fundamentals

Prof. Hui Jiang
Dept of Electrical Engineering and Computer

Science, York University

No.9

 Memory Management (2)

Memory Management Approaches

•  Contiguous Memory Allocation

•  Paging

•  Segmentation

•  Segmentation with paging

Contiguous Memory Allocation suffers serious external fragmentation

Paging(1)

•  Each page is independently
mapped to (or physically
supported by) one frame.

•  User program sees a contiguous
logical space.

•  But the supporting frames are
scattered in physical memory.

•  The mapping is automatically
done by hardware or OS based
on a page table.

Logical address Logical space

Page 0

Page 1

Page 2

Page 3

Page 4

Page 5

Page 6

000
001

201
202

Frame 0
Frame 1
Frame 2
Frame 3
Frame 4
Frame 5
Frame 6
Frame 7
Frame 8
Frame 9

Frame 10
Frame 11
Frame 12

Physical Memory

•  Logical space is contiguous and consists of pages
•  Physical space is broken into frames
•  Page size = Frame size

Paging Example(1)

Address Translation Architecture

•  p is used to index page
table to find frame
number or base
physical address of this
page.

•  d is the offset in the
mapped frame.

•  The physical address Y:
 Y = f *k + d
 (f is frame number).

•  Convert logical address into page # and offset :
 Logical address (X) = page number (p) + page offset (d).
•  Assume page size k:
 p = X/k (quotient).
 d = X%k (remainder).

Translation of logical address
(for binary address)

•  Page size (frame size) is typical a power of 2. (4k – 16M).
•  Logical address is a concatenated bit stream of page number

and page offset.
•  An example: 1) logical space is 2**m: logical address is m bits.
 2) page size is 2**n: page offset is n bits.
 3) a logical space needs at most 2**(m-n) pages:

 page table contains at most 2**(m-n) elements
 page number needs (m-n) bits to index page table

page number page offset
p d

m-n bits n bits
Given a binary logical address, the last n bits is page offset
and the first m-n bits is page number.

2

Paging Example (2)

•  Physical memory: 32-byte (2**5).
•  Logical memory: 16-byte (2**4).
•  Page size: 4-byte (2**2).
•  Logical memory needs up to 4

pages: 4 entries in page table.
•  m=4, n=2.

page 0

page 1

page 2

page 3

Logical address 9 : 1 0 0 1

frame 0

frame 1

frame 2

frame 3

frame 4

frame 5

frame 6

frame 7

Paging Example (2)

•  Physical memory: 32-byte (2**5).
•  Logical memory: 16-byte (2**4).
•  Page size: 4-byte (2**2).
•  Logical memory needs up to 4

pages: 4 entries in page table.
•  m=4, n=2.

page 0

page 1

page 2

page 3

Logical address 9 : 1 0 0 1

frame 0

frame 1

frame 2

frame 3

frame 4

frame 5

frame 6

frame 7

0 1 0 1 0 Physical address 5 :

Paging Hardware

•  OS maintains a page table for every process.
•  All page tables are kept in physical memory.
•  The currently active page table is page table of the currently

running process.
•  For small active page-table (<256 entries): using registers
•  For large page-table: using two indexing registers

–  page-table base register (PTBR) points to the active
page table.

–  page-table length register (PTLR) indicates size of the
active page table.

–  In this scheme every data/instruction access requires two
memory accesses. One for the page table and one for
the data/instruction.

Paging Hardware: TLB

•  Caching: using of a special fast-lookup hardware cache called
associative registers or translation look-aside buffers (TLBs)

–  Associative registers (expensive) – parallel search
–  speedup translation from page # ! frame # :

 Assume page number is P:
 -- If P is in associative register, get frame # out. (hit)
 -- Otherwise get frame # from page table in memory (miss)
 Save to TLB for next reference, replace an old one if full

Page # Frame #

P1
P2
P3

F1

……

F2
F3

……

P Fx

Paging Hardware with TLB:
 MMU in Paging

Need to flush TLB’s in context switch

Effective Access Time of
paging after TLB

•  Assume memory cycle time is a time unit.
•  One TLB Lookup = b time unit.
•  Hit ratio – percentage of times that a page number is found in the

associative registers; ration related to number of associative
registers.

•  Hit ratio = λ.
•  Effective Access Time (EAT):

 EAT = (a + b) λ + (2a + b)(1 – λ)
 = (2 - λ)a + b

Example: a = 100 nanoseconds, b = 20 nanosecond.

If λ = 0.80, EAT = 140 nanoseconds (40% slower).
If λ = 0.98, EAT = 122 nanoseconds (22% slower).

3

Paging (2)
•  No external fragmentation in paging.
•  Internal fragmentation: process size does not happen to

fall on page boundaries.
–  Average one-half page per process.

•  How to choose page size:
–  Smaller page size:

•  less internal fragmentation.
•  large page table (more overhead).

–  Typical 4K—8KB
•  If each page table entry is 4 bytes long, it can point to

one of 2**32 frames
–  Maximal physical address: frame size * (2**32)
 (from this we can deduce the bit number in physical

address)

Paging (3): Memory Allocation
•  OS keeps track of all free frames.
•  To run a program of size n pages, OS needs to find n free frames and load program.
•  OS sets up a page table to translate logical to physical addresses.
•  Each process has its page table and saved in memory pointed by its PCB.

OS data structure for Paging

•  OS maintain a page table for each process in memory, pointed by the
PCB of the process.

–  Used to translate logical address in a process’ address space into
physical address.

–  Example: one process make an I/O system call and provide an
address as parameter (logical address in user space). OS must use
its page-table to produce the correct physical address.

•  OS maintains a global frame table:
–  One entry for each physical frame in memory.
–  To indicate the frame is free or allocated, if allocated, to which page

of which process.

•  In context switch, the saved page-table is loaded by the CPU dispatcher
to MMU for every memory reference and flush TLB. (This increases
context switch time)

Memory Protection in paging
•  How is memory protected from different processes?

–  In paging, other process memory space is protected automatically.
•  Memory protection can be implemented by associating protection bits

with each frame in page table
–  One bit for read-only or read-write
–  One bit for execute-only
–  One Valid-invalid bit

•  “valid” indicates that the associated page is in the process’
logical address space, and is thus a legal page.

•  “invalid” indicates that the page is not in the process’ logical
address space.

•  Use page-table length register (PTLR): to indicate the size of
page table

•  Valid-invalid bit is mainly used for virtual memory
•  In every memory reference, the protection bits are checked. Any invalid

access will cause a trap into OS.

Example:

 --14-bit address
 -- page size 2KB
 -- valid space
 0-16383 (2**14)

Sharing Memory in Paging
•  Different pages of several processes can be mapped to the

same frame to let them share memory.
•  Shared-memory for inter-process communication.
•  Private code and data:

–  Each process keeps a separate copy of the code and data.
–  The pages for the private code and data can appear

anywhere in the logical address space.
•  Shared code:

–  One copy of read-only (reentrant) code shared among
processes (i.e., text editors, compilers, window systems).

–  Shared code must appear in same location in the logical
address space of all processes (i.e. same locations in the
page tables).

4

Shared Pages Example

shared
memory

physical memory

Shared Pages

•  How to share pages with code which has a direct address reference?

Jump <0,10>

Data 1

Data 2

Code

Process 1:

10

40

50

<0,10> ! 10*100+10=1010

Process 2:

0

1

50

PT

10

<0,10> ! 50*100+10=5010

Incorrect reference

0

1

10

PT

40

0

1000

4000

5000

Frame # Physical address Assume each page has 100 bytes:

Copy-on-Write
•  For quick process creation: fork()
•  Traditionally, fork() copies parent’s address space for the

child.
•  Copy-on-Write: without copying, the parent and child process

initially share the same pages, and these pages are marked as
copy-on-write.

–  If either process needs to write to a shared page, a copy of
the shared page is created and stop sharing this page.

•  Advantages of copy-on-write:
–  Quick process creation (no copying, just modify page

table for page sharing)
–  Eventually, only modified pages are copied. All non-

modified pages are still shared by the parent and child
processes.

•  Better memory utilization

Copy-on-Write

Copy of C

Hierarchical Paging
(multilevel paging)

•  In modern computer, we
require a large logical-
address space, which
results in some huge
page table.

•  No contiguous memory
space for the large page
table.

•  Hierarchical paging:
using paging technique
to divide the large page
table into smaller pieces

Address-Translation in two-level paging

•  Logical address 32-bit, page size 4K, maximal physical address 2**32 frames
•  A logical address is divided into 20 bits page number and 12 bits page offset.
•  Since page-table is paged, the logical address is as follows:

where pi is an index into the outer page table, and p2 is the displacement within
the page of the outer page table.

page number page offset
pi p2 d

10 10 12

4-byte

4-byte

1-byte

Physical address

5

Multilevel Paging and Performance

•  64-bit logical address may require 6-level paging.
•  Since each level is stored as a separate table in memory,

converting a logical address to a physical one may take seven
memory accesses.

•  TLB-based caching permits performance to remain
reasonable.

•  Cache hit rate of 98 percent yields:
 effective access time = 0.98 x 120 + 0.02 x 720
 = 132 nanoseconds.

which is only 32 percent slowdown in memory access time.

•  But the overhead is too high to maintain many page-tables
•  In 64-bit Linux, it uses 4-level paging to page 48-bit address.

