Prepared by Prof. Hui Jiang

York Univ.

EECS 3221
Operating System
Fundamentals

Instructor: Prof. Hui Jiang
Email: hj@cse.yorku.ca
Web: http://www.eecs.yorku.ca/course/3221

General Info

3 lecture hours each week
2 assignments (2*5%=10%)
1 project (10%)
5 in-class short quizzes (best 4 out of 5, 10%)
In-class mid-term (30%)
Final Exam (40%) (final exam period)
In-class
— Focus on basic concepts, principles and algorithms
— Examples given in C
— Brief case study on Unix series (mainly Linux)
Assignments and tests
— Use C language

18-09-06

Prepared by Prof. Hui Jiang

York Univ.

Bibliography

* Required textbook
— “Operating System Concepts: 9t edition”

* Other reference books (optional):

— “Advanced Programming in the Unix
Environment” (for Unix programming, Unix API)

— “Programming with POSIX threads” (Multithread
programming in Unix, Pthread)

— “Linux Kernel Development (2nd edition)”
(understanding Linux kernel in details)

Why this course?

* OS is an essential part of any computer system

* To know
— what’ s going on behind computer screens
— how to design a complex software system

¢ Commercial OS:

— Unix, BSD, Solaris, Linux, Mac OS, Android, Chrome
os

— Microsoft DOS, Windows 95/98,NT,2000,XP,Vista,
Win7, Win8

18-09-06

Prepared by Prof. Hui Jiang 18-09-06

What is Operating System (OS) ?

* A program that acts as an intermediary between
computer hardware and computer users (or user
applications).

+ OS manages computer hardware:
— Use the computer hardware efficiently.
— Make the computer hardware convenient to use.
— Control resource allocation.
— Protect resource from unauthorized access.

Computer Structure

Operating-
System
gner

Operating System

Computer Hardware

York Univ. 3

Prepared by Prof. Hui Jiang

York Univ.

Hardware Review

Interrupt

Instruction execution

Three basic I/0 methods

Storage hierarchy and caching

Computer Hardware

mouse keyboard printer monitor
diSKS d on-line b
disk graphics
CPU S USB controller adapter

memory

18-09-06

Prepared by Prof. Hui Jiang 18-09-06

CPU Main Memory
o 0
System . 1
Bus f
Tnstruction .
Instruction -
Instruction
Data
Data
Data
Data
1/0 Module n-2
n-1
. PC = Program counter
Buffers IR = Instruction register
MAR = Memory address register
MBR = Memory buffer register
1/0 AR = Input/output address register
T/O BR = Input/output buffer register
Computer Components: Top-Level View

Instruction Execution

Memory CPU Registers Memory CPU Registers
300(1 940 300[/PC 300[19 40 301|pC
301|159 41 AC|301/5 9 4 1 0 00 3]AC
3022 1 194 0]IR|302{2 941 194 0]IR

940[070°03] 940[370_0 3}
941[0 0 0 2] 941[0 0 0 2]
Step 1 Step 2
Memory CPU Registers Memory CPU Registers

300[1 9 40 30 1lpc |300[19 40 [Eo2lrc
3015941 000 3]AC|301[5 9 41 0 00 5]AC
302[2°9 4 1] 594 1]JIR|[302279 41 594 1"
940[0 0 0 3] 940[0 0 0 3] 342=5
941[0_0 0 2] 941[0_0 0 2]

Step 3 Step 4
Memory CPU Registers Memory CPU Registers

30T 940 [Fozrec |30019540 PC

301|{5 9 41 000 S|AC|301|5 9 41 0 00 5|AC]

3229 4 1—»29 4 1JIR|302[2941] ([2941]IR

T T

940[0 0 0 3] 940[0 0 0 3]

941{0_0 0 2] 941

Step § Step 6
0 34 15
(Opcode | Address |

York Univ. 5

Prepared by Prof. Hui Jiang 18-09-06

Interrupts

* A hardware signal to interrupt the normal execution
sequence of CPU.

* To notify CPU that an event has happened.
User Program Interrupt Handler

_

Interrupt —»
occurs here i+1 <

M

Instruction Cycle with interrupts

Fetch Stage Execute Stage Interrupt Stage

Interrupts
Disabled

y N Fetch next Execute
(START ; d instruction I instruction

Check for
interrupt;
initiate interrupt
handler

Interrupts
Enabled

Instruction Cycle with Interrupts

York Univ. 6

Prepared by Prof. Hui Jiang 18-09-06

T-M -
1 [NET]
™ - —— Control [
Control Y Stack
Stack [| T
T —] — =]
Program
Program Counter
Counter
{ =
y s ¥ Interrupt General
e errupt General 1 service Registers
Service Registers — B
¥+ £ [Remes] Routine ¥ + L [Rewrn) Routine | T™
Stack Sk
Pointer e
Processor | Processor |
1 T
— T-M ~
Sl e N1 [Users
[Program Program
Main N
Memory Main
- Memory
(a) Interrupt occurs after instruction
atlocation ¥V (b) Return from interrupt

Interrupt Handler

* Program or subroutine to service a particular interrupt.

* A major part of the operating system is implemented
as Interrupt handlers since modern OS design is
always interrupt-driven.

* Determines which type of interrupt has occurred:
- Polling

- Vectored interrupt system

* Interrupt Vectors: saved in low-end memory space

York Univ. 7

Prepared by Prof. Hui Jiang 18-09-06

Multiple Interrupts

+ Sequential interrupt processing: disable interrupts
while an interrupt is being processed

Interrupt
User Program Handler X

{IIIIIIIIIIIII

—
N

Interrupt
Handler Y

(a) Sequential interrupt processing

Multiple Interrupts

* Nested interrupt processing: define priority for interrupts.
* A high-priority interrupt preempts a low-priority one.

IIIIIIIII{

Interrupt
User Program Handler X
= 7=
=] ;\
= Interrupt
- andler Y

N\

(b) Nested interrupt processing

York Univ. 8

Prepared by Prof. Hui Jiang 18-09-06

I/0 Communication Techniques

* Programmed /O (busy-waiting)
* Interrupt-driven 1/O

* Direct memory access (DMA)

Programmed I/0O (Busy-waiting)

Error

Write word
into memory

CPU — memory

Next instruction
(a) Programmed 1/O

York Univ. 9

Prepared by Prof. Hui Jiang 18-09-06

Interrupt-driven I/0

Issue Read PU - 1/O
—» command to Do something
VO module [~ else

Next instruction
(b) Interrupt-driven /O

DMA

Issue Read PU — DMA
block command Do something
to I/O module =" Pealse
= = = Interrupt
DMA — CPU

Next instruction

(c) Direct memory access

York Univ. 10

Prepared by Prof. Hui Jiang

Storage Structure: storage hierarchy

registers

\ 4

‘ cache

)

A
i

v

‘ main memory

)

)
i

v

electronic disk

74

I
v

magnetic disk

I

I
o

optical disk

f

|
i v

magnetic tapes

Storage Hierarchy

Level 1 2 3 4

Name registers cache main memory disk storage
Typical size <1KB > 16 MB > 16 GB > 100 GB
Implementation custom memory with | on-chip or off-chip| CMOS DRAM magnetic disk
technology multiple ports, CMOS | CMOS SRAM

Access time (ns) 0.25-0.5 0.5-25 80 - 250 5,000.000
Bandwidth (MB/sec) | 20,000 — 100,000 5000 - 10,000 1000 — 5000 20-150
Managed by compiler hardware operating system | operating system
Backed by cache main memory disk CD or tape

York Univ.

Volatile vs. Persistent

18-09-06

11

Prepared by Prof. Hui Jiang

York Univ.

Caching

+ Caching is an important technique in computer systems.
» Improve access speed with minimum cost.

+ Caching: copy information to a faster storage system on a
temporary basis.

Example:

cpPU One memory access 100 nanoseconds
hit One cache access 20 nanoseconds
If hit rate is 99%, then
(1) 128M memory without cache: 100 nano
cache miss (2) 128M cache: 20 nano (too expensive)
(3) 128M memory + 128K cache:
0.99*20+0.01*120 = 21 nano

128 Kb

Memory

128 Mb

Caching
* Why high hit rate?
— Memory access is highly correlated
— Locality of reference
« Cache Design:
— Cache size

— Replacement algorithm: Least-Recently-Used (LRU)
algorithm

— Write policy: write memory when updated or replaced.
— Normally implemented by hardware.

Block Transfer

Word Transfer f\k./\
~AA

| cpu | Cache Main Memory

18-09-06

12

Prepared by Prof. Hui Jiang

York Univ.

Computer System (overview)

Users

Operating
Systems

Computer
Hardware

S

thread of execution

CPU (*N)

ayoed

cycle

elep ———>

1senbal O/ ——
1dnuiaul

— instruction execution —»

«— data movement —»

instructions
and
data

memory

OS Overview

(e

e

File
Process | Memory | System ||/0-system
Manage | Manage | Secondary Manage
Storage
Management

/10

System Calls

18-09-06

13

Prepared by Prof. Hui Jiang

York Univ.

Process Management

* A process is a program in execution.

* A process needs certain resources, including CPU
time, memory, files, and I/O devices, to accomplish its
task.

* The operating system is responsible for the following
activities in connection with process management.

— Process creation and deletion.
— Process suspension and resumption.
— Provision of mechanisms for:

* Process synchronization

* Inter-process communication

* Handling dead-lock among processes

Main-Memory Management

* Memory is a large array of words or bytes, each with its own
address. It is a repository of quickly accessible data shared by
the CPU and /O devices.

* Main memory is a volatile storage device. It loses its contents in
the case of system failure.

» For a program to be executed, it must be mapped to absolute
addresses and loaded into memory.

* We keep several programs in memory to improve CPU utilization

* The operating system is responsible for the following activities
in connections with memory management:

— Keep track of memory usage.
— Manage memory space of all processes.
— Allocate and de-allocate memory space as needed.

18-09-06

14

Prepared by Prof. Hui Jiang

York Univ.

Secondary-Storage Management

+ Since main memory (primary storage) is volatile and too small
to accommodate all data and programs permanently, the
computer system must provide secondary storage to back up
main memory.

* Most modern computer systems use hard disks as the
principal on-line storage medium, for both programs and data.

* The operating system is responsible for the following activities
in connection with disk management:

— Free space management
— Storage allocation
— Disk scheduling

File Management

* File system: a uniform logical view of information storage
A File:
— logical storage unit

— a collection of related information defined by its creator.
Commonly, files represent programs (both source and object
forms) and data.

* Files are organized into directories to ease their use.

The operating system is responsible for the following activities in
connections with file management:

File Name-space management

File creation and deletion.

Directory creation and deletion.

Support of primitives for manipulating files and directories.
Mapping files onto secondary storage.

File backup on stable (nonvolatile) storage media.

18-09-06

15

Prepared by Prof. Hui Jiang

York Univ.

I/0 System Management

* The I/O system consists of:

— A memory-management component that includes
buffering, caching, and spooling.

— A general device-driver interface.
— Drivers for specific hardware devices.

1

: Kernel OS Kernel
! R

| Kernel I/O subsystems

T r— T I E—
1 .

| Device drivers VIO interface
1

Hardware devices and controllers

Protection System

* Protection refers to a mechanism for controlling
access by programs, processes, or users to both
system and user resources.

* The protection mechanism must:

— distinguish between authorized and
unauthorized usage.

— specify the controls to be imposed.
— provide a means of enforcement.

18-09-06

16

Prepared by Prof. Hui Jiang 18-09-06

Content in OS Course

* Managing CPU usage
— Process and thread concepts
Multi-process programming and multithread programming
CPU scheduling
Process Synchronization
Deadlock
* Managing memory usage
— Memory management and virtual memory
* Managing secondary storage
— File system and its implementation
— Mass-storage structure
* Managing I/O devices:
— /O systems
* Protection and Security
» Case study on Unix series (scattered in all individual topics)

Tentative schedule
(subject to change)

Totally 12 weeks:

» Background (2.5 week)

Process and Thread (2 weeks)

CPU scheduling (1 week)

Process Synchronization (2.5 weeks)
Memory Management (2 weeks)
Virtual Memory (1 week)

Protection and Security (1 week)

York Univ. 17

Prepared by Prof. Hui Jiang 18-09-06

Several must-know
OS concepts

System Booting

Multiprogramming

Hardware Protection
— OS Kernel

System Calls

OS Booting

* Firmware: bootstrap program in ROM
— Diagnose, test, initialize system

* Boot block in disc

* Entire OS loading

York Univ. 18

Prepared by Prof. Hui Jiang

York Univ.

the

* OS Kernel:

+ Batch system is simple to
design, but CPU is often idle. (a)

Simple Batch Systems
(Uniprograming)

initial control in OS
OS loads a job to memory
control transfers to job

when job completes
control transfers back to

free memory

free memory

job

monitor

« Automatic job sequencing — TG
automatically transfers control interpreter
to another job after the first is

command
interpreter

done. kernel

kernel

(b)

Memory Layout for a Simple Batch System

Multiprogramming System

« Several jobs are kept in main memory at
the same time, and CPU is multiplexed
among them.

* How to implement multiprogramming is

center of modern OS.

* OS Features Needed for
multiprogramming:

Memory management — the system must
allocate the memory to several jobs

Some scheduling mechanism — OS must
choose among several jobs ready to run

Protection between jobs.
Allocation of devices to solve conflicts
I/O routine supplied by the OS

jobo D

free memory

job C

interpreter

job B

kernel

Memory Layout for
Multiprogramming System

18-09-06

19

Prepared by Prof. Hui Jiang

York Univ.

Multiprogramming

Program A Run Wait Run Wait

Program B Wait| Run Wait Run Wait

Program C Wait Run Wait Run Wait

Combined R:" Rl‘;“ R(':'“ Wait R:“ Rl';" R(':‘“ Wait
Time >

(c) Multiprogramming with three programs

Multiprogramming: example

JOB1 JOB2 JOB3
Type of job Heavy compute Heavy I/O Heavy I/O
Duration 5 min 15 min 10 min
Memory required S50 M 100 M 5M
Need disk? No No Yes
Need terminal? No Yes No
Need printer? No No Yes
Uniprogramming Multiprogramming
Processor use 20% 40%
Memory use 33% 67%
Disk use 33% 67%
Printer use 33% 67%
Elapsed time 30 min 15 min
Throughput 6 jobs/hr 12 jobs/hr
Mean response time 18 min 10 min

18-09-06

20

Prepared by Prof. Hui Jiang

York Univ.

Time-Sharing Systems (Multitasking)
—Interactive Computing

* Multitasking also allows time sharing among jobs: Job
switch is so frequent that the user can interact with
each program while it is running.

* Maintain a time slice.
* Allow many users share a single computer.

* Used to implement a popular scheduling algorithm
towards fairness.

Hardware Protection

Dual-mode Protection Strategy
— OS Kernel

* Memory protection

CPU protection

1/0 protection

18-09-06

21

Prepared by Prof. Hui Jiang

York Univ.

Dual-Mode CPU

* Provide hardware support to differentiate between at
least two modes of CPU execution.

1. Kernel mode (also monitor mode or system mode) —
execution on behalf of operating system.

2. User mode — execution on behalf of user programs.
A mode bit in CPU to indicate current mode.
* Machine instructions:

— Normal instructions: can be run in either mode

— Privileged instructions: can be run only in kernel modes
Dual-model CPU for OS protection:

- OS always in kernel mode; user program in user mode.

Dual-Mode CPU Operation (Cont.)

* When booted, CPU starts from kernel mode.

* When an interrupt occurs, hardware switches to kernel

mode.
Interrupt/fault

set user mode

+ OS always in kernel mode; user program in user mode.
(Guaranteed? and how?)

- OS always switches CPU to user mode before passing
control of CPU to any user program.

18-09-06

22

Prepared by Prof. Hui Jiang

York Univ.

Dual-Mode CPU Operation

« Carefully define which instruction should be
privileged:

— Common arithmetic operations: ADD, SHF, MUL, ...
— Change from kernel to user mode

— Change from user to kernel mode (not allowed)

— Turn off interrupts

— TRAP

— Set value of timer

— Set CPU special-purpose registers

— 1/O related instructions

OS Kernel

OS Kernel _
Key functions:
Process management
Program Data Memory management
& Codes structure etc.

Kernel space

.|‘.:"'.".'.~..
.. ::
. :(via system calls)
User space I

System
y Command User Program
Programs
Interpreter (shell)
Program Data Program Data Program Data
& Codes | | structure & Codes | | structure & Codes | | structure

18-09-06

23

Prepared by Prof. Hui Jiang

York Univ.

Memory Protection

» Each running program has its own memory space

* Add two registers that determine the range of legal addresses:
— base register — holds the smallest legal physical memory address.
— Limit register — contains the size of the range

0

256000

300040

420940

880000

1024000

monitor

base base + limit

job 1

- 300040
. ﬁ address yes.
job 2 base register| CPU >
no
120900
limit register
job 3 9

trap to operating system
monitor—addressing error memory

job 4

» Loading these registers are privileged instructions

» OS, running in kernel mode, can access all memory unrestrictedly

CPU Protection

» Timer - interrupts CPU after specified period to ensure
operating system maintains control.

Timer is decremented every clock tick.
When timer reaches the value 0, an interrupt occurs.

OS must set timer before turning over control to the user.
Load-timer is a privileged instruction.

* Timer commonly used to implement time sharing.

« Timer is also used to compute the current time.

18-09-06

24

Prepared by Prof. Hui Jiang

York Univ.

I/0 Protection

To prevent users from performing illegal 1/0, define all
1/0 instructions to be privileged instructions.

User programs can not do any I/O operations directly.
User program must require OS to do I/O on its behalf:
— OS runs in kernel mode
— OS first checks if the 1/O is valid

— If valid, OS does the requested operation;
Otherwise, do nothing.

— Then OS return to user program with status info.
How a user program asks OS to do I/0
— Through SYSTEM CALL (software interrupt)

System Calls

System calls provide the interface between a running user program
and the operating system.

Process and memory control:

— Create, terminate, abort a process.

— Load, execute a program.
Get/Set process attribute.
Wait for time (sleep), wait event, signal event.
Allocate and free memory.
Debugging facilities: trace, dump, time profiling.
File management:

— create, delete, read, write, reposition, open, close, etc.
/0 device management: request, release, open, close, etc.
Information maintain: time, date, etc.

Communication and all other I/O services.

18-09-06

25

Prepared by Prof. Hui Jiang

York Univ.

System Call Implementation (I)

* Typically, a unique number is associated with each
system call:
— System-call interface maintains a table indexed
according to these numbers.
- Basically, every system call makes a software
interrupt (TRAP).

* The system call interface invokes intended system
call in OS kernel and returns status of the system
call and any return values.

System Call — OS Relationship

user application

open ()

i

user
mode

system call interface
kernel
mode A

| open ()

-/ Implementation
i » of open ()
system call

return

18-09-06

26

Prepared by Prof. Hui Jiang

main()

_strut_PARA sp;

_set_para_(&sp) ;

_system_call_(13,&sp);

« Three general methods are used to pass parameters
between a running program and the operating system.

— Pass parameters in registers.

— Store the parameters in a table in memory, and the
table address is passed as a parameter in a register.

(This approach is taken by Linux and Solaris.)

— Push (store) the parameters onto the stack by the
program, and pop off the stack by operating system.

System Call Implementation (II)

X

X: parameters
for call

load address X =1
system call 13 =7

register

Parameters Passing Via Table

—

York Univ.

user program

> use parameters

from table X

operating system

}

code forl
system
call 13

18-09-06

27

Prepared by Prof. Hui Jiang

York Univ.

Use of A System Call to Perform I/0

Y
case n os
trap to _ e _ perform 1/O
os - >
return
to user
user
system call n — program

_—

Some UNIX I/0 system calls

+ open(), read(), write(), close(), Iseek():
#include <sys/stat.h>

#include <fcntl.h>

int open(const char *path, int oflag) ;

#include <unistd.h>
ssize_t read(int fd, void *buf, size_t count);

#include <unistd.h>
ssize_t write(int fd, const void *buf, size_t count);

#include <unistd.h>
int close(int £d);

#include <unistd.h>
off t lseek(int fildes, off t offset, int whence);

18-09-06

28

Prepared by Prof. Hui Jiang

York Univ.

Example of System Calls

+ System call sequence to copy the content of one file
to another file

source file destination file

A4

4 Example System Call Sequence N

Acquire input file name
Write prompt to screen
Accept input
Acquire output file name
Write prompt to screen
Accept input
Open the input file
if file doesn't exist, abort
Create output file
if file exists, abort
Loop
Read from input file
Write to output file
Until read fails
Close output file
Write completion message to screen
Terminate normally)

A

System Call vs. API

+ System calls are generally available as assembly-
language instructions:

— Some languages support direct system calls, C/C++/
Perl.

* Mostly accessed by programs via a higher-level
Application Program Interface (API) rather than direct
system call use.

* Why use APIs rather than system calls?

— API’ s are easier to use than actual system calls
since they hide lots of details

— Improve portability

18-09-06

29

Prepared by Prof. Hui Jiang

York Univ.

Standard C Library Example

» C program invoking printf () library call, which
calls write () system call

user

mode

Process
Control

File
Manipulation

Device
Manipulation

Information
Maintenance

Communication

Protection

mode
kernel

#include <stdio.h>
int main ()

— printf ("Greetings");

return O;

}

standard C library

<\A:rite () >

write ()
system call

System Calls: Unix vs.

Windows

CreateProcess()
ExitProcess()
WaitForSingleObject()

CreateFile()
ReadFile()
WriteFile()
CloseHandle()

SetConsoleMode ()
ReadConsole ()
WriteConsole()

GetCurrentProcessID()
SetTimer()
Sleep()

CreatePipe()
CreateFileMapping ()
MapViewOfFile()

SetFileSecurity()
InitlializeSecurityDescriptor()
SetSecurityDescriptorGroup()

Windows

Unix

fork()
exit()
wait()

open()
read()
write()
close()

ioctl()
read ()
write()

getpid()
alarm()
sleep()

pipe O
shmget ()
mmap ()

chmod ()
umask ()
chown()

18-09-06

30

